Universality of plastic instability and mechanical yield in metallic glasses.

J Phys Condens Matter

Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The generic response of a wide range of amorphous solids is the average increase of stress upon external loading until the yielding transition point, after which elasto-plastic steady state sets in. The stress-strain response comprises of a series of elastic branches interspersed with plastic drops. The ubiquitousness of these phenomena indicates universality, independent of material property, but the literature predominantly deals with specific materials. In pursuit of generality among different amorphous systems, we undertake a careful investigation in the mechanical response of metallic glasses using computer simulation. By comparing our results of multi-body metallic glass potentials to those obtained from pairwise Lennard-Jones glasses, we show that the mechanism of plastic instabilities is universal and independent of the details of the underlying potential. We also investigate the yielding transition in terms of the overlap parameter, which has been successfully used Lennard-Jones glasses. The yielding is unambiguously identified as a first-order phase transition. These observations conform the nature of plastic instabilities and mechanical yield as universal and independent of microscopic interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac0474DOI Listing

Publication Analysis

Top Keywords

mechanical yield
8
metallic glasses
8
yielding transition
8
lennard-jones glasses
8
plastic instabilities
8
universal independent
8
universality plastic
4
plastic instability
4
instability mechanical
4
yield metallic
4

Similar Publications

Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.

View Article and Find Full Text PDF

A Monte Carlo Method for Estimating Secondary Photon Yields from Beta-emitting Radionuclides Concentrated in Environmental Soil.

Health Phys

September 2025

Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.

View Article and Find Full Text PDF

Core-shell electrodes provide a potential and innovative approach for significantly enhancing the performance and capacity of supercapacitors (SCs) by combining two distinct materials. The capabilities of these advanced electrodes surpass those of conventional single electrodes. Specifically, these exhibit better energy storage, higher power density, and improved overall performance.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

Understanding gastric physiology in rodents is critical for advancing preclinical neurogastroenterology research. However, existing techniques are often invasive, terminal, or limited in resolution. This study aims to develop a non-invasive, standardized MRI protocol capable of capturing whole-stomach dynamics in anesthetized rats with high spatiotemporal resolution.

View Article and Find Full Text PDF