A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning from clinical data sets of a contemporary decision for orthodontic tooth extraction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To examine the robustness of the published machine learning models in the prediction of extraction vs non-extraction for a diverse US sample population seen by multiple providers.

Setting And Sample Population: Diverse group of 838 patients (208 extraction, 630 non-extraction) were consecutively enrolled.

Materials And Methods: Two sets of input features (117 and 22) including clinical and cephalometric variables were identified based on previous studies. Random forest (RF) and multilayer perception (MLP) models were trained using these feature sets on the sample population and evaluated using measures including accuracy (ACC) and balanced accuracy (BA). A technique to identify incongruent data was used to explore underlying characteristics of the data set and split all samples into 2 groups (G1 and G2) for further model training.

Results: Performance of the models (75%-79% ACC and 72%-76% BA) on the total sample population was lower than in previous research. Models were retrained and evaluated using G1 and G2 separately, and individual group MLP models yielded improved accuracy for G1 (96% ACC and 94% BA) and G2 (88% ACC and 85% BA). RF feature ranking showed differences between top features for G1 (maxillary crowding, mandibular crowding and L1-NB) and G2 (age, mandibular crowding and lower lip to E-plane).

Conclusions: An incongruent data pattern exists in a consecutively enrolled patient population. Future work with incongruent data segregation and advanced artificial intelligence algorithms is needed to improve the generalization ability to make it ready to support clinical decision-making.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ocr.12502DOI Listing

Publication Analysis

Top Keywords

sample population
16
incongruent data
12
machine learning
8
mlp models
8
mandibular crowding
8
data
5
models
5
population
5
learning clinical
4
clinical data
4

Similar Publications