Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131663PMC
http://dx.doi.org/10.3389/fpubh.2021.627654DOI Listing

Publication Analysis

Top Keywords

arctic boreal
16
pandemic potential
12
north american
8
american arctic
8
boreal biomes
8
monitoring mitigation
8
zoonotic disease
8
wildlife trade
8
indigenous peoples
8
zoonotic pathogens
8

Similar Publications

Snow is an important insulator of Arctic soils during winter and may be a source of soil moisture in summer. Changes in snow depth are likely to affect fine root growth and mortality via changes in soil temperature, moisture, and/or nutrient availability, which could alter aboveground growth and reproduction of Arctic vegetation. We explored fine root dynamics at three contrasting treelines in northwest Alaska.

View Article and Find Full Text PDF

Seasonal quantification of aquatic macrophytes in small boreal lakes with multiscale remote sensing.

Sci Total Environ

September 2025

Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland.

Small lakes are common across the Boreal-Arctic zone. Due to shallowness and high shoreline-surface area ratios, they are abundant in aquatic macrophytes. Vegetated littoral zones have been suggested to count as wetlands when quantifying carbon sinks and sources, but the actual magnitude of aquatic vegetation is seldom quantified.

View Article and Find Full Text PDF

This paper presents the results of a study of the physicochemical conditions and contamination of a peat deposit in a representative northern boreal bog with the persistent organic pollutants (POPs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP), as well as compounds from another organochlorine compounds, the chlorinated phenols (CPs). Despite the remoteness from the industrial sources of these compounds, a wide range of the organochlorine compounds were detected in the studied peat deposit. The maximum concentrations of HCB, PeCB, and PCP reached 9.

View Article and Find Full Text PDF

Plant functional trait-based approaches are powerful tools to assess the consequences of global environmental changes for plant ecophysiology, population and community ecology, ecosystem functioning, and landscape ecology. Here, we present data capturing these ecological dimensions from grazing, nitrogen addition, and warming experiments conducted along a 821 m a.s.

View Article and Find Full Text PDF

Climate warming is especially pronounced in winter and at high latitudes. Warming winters are leading to the loss of lake ice and changing snow cover on lakes. Historically, lake scientists have paid less attention to the ice cover period, leading to data and theory gaps about the role of winter conditions in lake ecosystem function and the consequences of changing winters.

View Article and Find Full Text PDF