Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Microplastics contaminating drinking water is a growing issue that has been the focus of a few recent studies, where a major bottleneck is the time-consuming analysis. In this work, a micro-optofluidic platform is proposed for fast quantification of microplastic particles, the identification of their chemical nature and size, especially in the 1-100 µm size range. Micro-reservoirs ahead of micro-filters are designed to accumulate all trapped solid particles in an ultra-compact area, which enables fast imaging and optical spectroscopy to determine the plastic nature and type. Furthermore, passive size sorting is implemented for splitting the particles according to their size range in different reservoirs. Besides, flow cytometry is used as a reference method for retrieving the size distribution of samples, where chemical nature information is lost. The proof of concept of the micro-optofluidic platform is validated using model samples where standard plastic particles of different size and chemical nature are mixed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131687 | PMC |
http://dx.doi.org/10.1038/s41598-021-89960-4 | DOI Listing |