Dual-Knockout of Mutant Isocitrate Dehydrogenase 1 and 2 Subtypes Towards Glioma Therapy: Structural Mechanistic Insights on the Role of Vorasidenib.

Chem Biodivers

Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, Vorasidenib (AG-881) has been reported as a therapeutic alternative that exerts potent dual inhibitory activity against mIDH1/2 towards the treatment of low-grade glioma. However, structural and dynamic events associated with its dual inhibition mechanism remain unclear. As such, we employ integrative computer-assisted atomistic techniques to provide thorough structural and dynamic insights. Our analysis proved that the dual-targeting ability of AG-881 is mediated by Val255/Val294 within the binding pockets of both mIDH1 and mIDH2 which are shown to elicit a strong intermolecular interaction, thus favoring binding affinity. The structural orientations of AG-881 within the respective hydrophobic pockets allowed favorable interactions with binding site residues which accounted for its high binding free energy of -28.69 kcal/mol and -19.89 kcal/mol towards mIDH1 and mIDH2, respectively. Interestingly, upon binding, AG-881 was found to trigger systemic alterations of mIDH1 and mIDH2 characterized by restricted residue flexibility and a reduction in exposure of residues to the solvent surface area. As a result of these structural alterations, crucial interactions of the mutant enzymes were inhibited, a phenomenon that results in a suppression of the production of oncogenic stimulator 2-HG. Findings therefore provide thorough structural and dynamic insights associated with the dual inhibitory activity of AG-881 towards glioma therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202100110DOI Listing

Publication Analysis

Top Keywords

structural dynamic
12
midh1 midh2
12
glioma therapy
8
dual inhibitory
8
inhibitory activity
8
associated dual
8
provide thorough
8
thorough structural
8
dynamic insights
8
structural
6

Similar Publications

Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.

View Article and Find Full Text PDF

Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.

View Article and Find Full Text PDF

Molecular Plasmonic Cavities.

Nano Lett

September 2025

Department of Physics, Columbia University, New York, New York 10027, United States.

Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.

View Article and Find Full Text PDF

A flexible linear circular bipolarization conversion metasurface based on graphene.

Phys Chem Chem Phys

September 2025

School of Electrical and Automation Engineering, Suzhou University of Technology, Suzhou, 215506, China.

A flexible bipolarization conversion metasurface based on graphene is proposed in this paper, which can achieve single-band linear-to-linear (LTL) and dual-band linear-to-circular (LTC) polarization conversion. The polarization conversion ratio (PCR) and axial ratio (AR) are dynamically regulated by varying the sheet resistance () of graphene. When = 1400 Ω Sq, the designed metasurface achieves a single-band LTL polarization conversion of 7.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).

View Article and Find Full Text PDF