Reduced Intercalation Energy Barrier by Rich Structural Water in Spinel ZnMnO for High-Rate Zinc-Ion Batteries.

ACS Appl Mater Interfaces

Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aqueous zinc-ion batteries are considered promising next-generation systems for large-scale energy storage due to low cost, environmental friendliness, and high reversibility of the Zn anode. However, the interfacial charge-transfer resistance for the insertion of divalent Zn into cathode materials is normally high, which limits the kinetics of Zn transfer at the cathode/electrolyte interface. This study reveals the presence of rich structural water in spinel ZnMnO (ZnMnO·0.94HO, denoted as ZMO), synthesized by a scalable and low-temperature process, significantly overcoming the great interfacial charge-transfer resistance. ZMO exhibits excellent electrochemical performance toward Zn storage, that is, high capacity (230 and 101 mA h g at 0.5 and 8 A g), high specific energy/specific power (329 W h kg/706 W kg and 134 W h kg/11,160 W kg), and stable cycle retention (75% after 2000 cycles at 4 A g) can be achieved. On the contrary, the controlled sample ZMO-450 with deficient structural water, prepared by post-heat treatment of ZMO at 450 °C, demonstrates limited discharge capacity (45 and 15 mA h g at 0.5 and 8 A g). As examined by electrochemical impedance spectroscopy, rich structural water in ZMO effectively reduces the activation energy barrier upon Zn insertion, rendering fast interfacial kinetics for Zn storage. Benefiting from rich structural water in ZMO, the involvement of Zn during the charge/discharge process exhibits good reversibility, as characterized by X-ray diffraction and X-ray photoelectron spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c05150DOI Listing

Publication Analysis

Top Keywords

structural water
20
rich structural
16
energy barrier
8
water spinel
8
spinel znmno
8
zinc-ion batteries
8
interfacial charge-transfer
8
charge-transfer resistance
8
water zmo
8
structural
5

Similar Publications

Amino acids (AAs) have a long history of being used as stabilizers for biological media. For example, they are important components in biomedical formulations. The effect of AAs on biological systems is also starting to be appreciated.

View Article and Find Full Text PDF

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF

We herein construct the Ce-O-Ti interface bridge in the CeO/N-TiCT heterojunction through an ultrasonic-assisted hydrothermal route as an efficient Pt-free hydrogen evolution electrocatalyst. The synergistic contribution of the heterogeneous Ce-O-Ti bridge and oxygen vacancies boosts the water dissociation and thus drastically reduces energy barriers of the hydrogen evolution reaction (HER). The optimal CeO/N-TiCT material requires only a small overpotential (51.

View Article and Find Full Text PDF

Crystal structures of distinct parallel and antiparallel DNA G-quadruplexes reveal structural polymorphism in C9orf72 G4C2 repeats.

Nucleic Acids Res

September 2025

State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.

The abnormal expansion of GGGGCC (G4C2) repeats in the noncoding region of the C9orf72 gene is a major genetic cause of two devastating neurodegenerative disorders, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These G4C2 repeats are known to form G-quadruplex (G4) structures, which are hypothesized to contribute to disease pathogenesis. Here, we demonstrated that four DNA G4C2 repeats can fold into two structurally distinct G4 conformations: a parallel and an antiparallel topology.

View Article and Find Full Text PDF

With the acceleration of global industrialization, a large amount of polluted wastewater is discharged indiscriminately, which both pollutes the environment and threatens human health. In this study, by constructing a binary system of unsaturated polyester resin/carboxychitosan, and improving the inherent defects of carboxychitosan aerogel, we successfully prepared aerogels with high porosity, low density, and laminar porous structure for water remediation by using a combination of the sol-gel method and directional freezing technology. Thanks to the synergistic effect of surface wettability and special pore structure, the aerogel not only adsorbs and separates MB and Pb(II) efficiently with a separation efficiency of more than 99 %, but also has a separation efficiency of 99.

View Article and Find Full Text PDF