A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An investigation into the optimal granular sludge size for simultaneous nitrogen and phosphate removal. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An aerobic granular sludge (AGS) pilot plant fed with a mixture of acetate amended centrate and secondary effluent was used to investigate the optimal granule size range for simultaneous nitrification and denitrification (SND) and ortho-phosphate removal. The anaerobic phase was mixed to understand how AGS will perform if integrated with a continuous flow activated sludge system that cannot feed the influent through the settled sludge bed. Five different granule size fractions were taken from the pilot (operated at DO setpoint of 2mgO/L) and each size was subjected to activity tests in a well-controlled lab-scale AGS reactor at four dissolved oxygen (DO) concentrations of 1, 2, 3, and 4 mgO/L. The size fractions were: 212 - 600 µm, 600 - 1000 µm, 1000 - 1400 µm, 1400 - 2000 µm, and >2000 µm. The smallest size range (212 - 600 µm) had the highest nitrification and phosphate removal rates at DO setpoints from 1 - 3 mgO/L, which was attributed to the higher aerobic volume fraction in small granules and hence a higher abundance of phosphorus accumulating organisms (PAO) and ammonia oxidizing bacteria (AOB). In comparison, large granules (>1000 µm) had 1.4 - 4.7 times lower ammonia oxidation rates than the smallest size range, which aligned with their lower AOB abundance relative to granule biomass. The granules with the highest anoxic volume fraction had the highest abundance of nitrite reductase genes (nir gene) but did not show the highest specific nitrogen removal rate. Instead, smaller granules (212 - 600 and 600 - 1000 µm), which had a lower nir gene abundance, had the highest specific nitrogen removal rates (1.2 - 3.1 times higher than larger granules) across all DO values except at 4 mgO/L. At a DO setpoint of 4 mgO/L, nitrite production by ammonia oxidation (ammonia monooxygenase) exceeded nitrite reduction by nitrite reductase in granules smaller than 1000 µm, in addition, some denitrifying heterotrophs switched to oxygen utilization in deeper layers hence suppressing denitrification activity. At the DO range of 2 - 4 mg/L, granular size had a greater effect on nutrient removal than DO. Therefore, for AGS developed at an average DO setpoint of 2 mgO/L, selecting for size fractions in the range of 212 - 1000 µm and avoiding DO values higher than 3 mgO/L can achieve both a higher nitrogen removal capacity and energy savings. This study is the first to investigate the influence of different DO values on SND and biological phosphorus removal performance of different aerobic granular sludge sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117119DOI Listing

Publication Analysis

Top Keywords

granular sludge
12
size range
12
size fractions
12
nitrogen removal
12
size
9
removal
8
phosphate removal
8
aerobic granular
8
granule size
8
212 600 µm
8

Similar Publications