98%
921
2 minutes
20
Background: The American College of Obstetricians and Gynecologists and the Society for Maternal-Fetal Medicine recently recommended offering genetic counseling and diagnostic testing for enlarged nuchal translucency at ≥3.0 mm, regardless of previous negative screening with noninvasive prenatal testing.
Objective: This study aimed to perform a population-based, individual record linkage study to determine the optimal definition of an enlarged nuchal translucency for the detection of atypical chromosome abnormalities.
Study Design: This was a retrospective study of women resident in Victoria, Australia, undergoing combined first-trimester screening during the 24-month period from January 2015 to December 2016. Linkages between statewide results for combined first-trimester screening, prenatal diagnostic procedures, and postnatal cytogenetic results from products of conception and infants up to 12 months of age were used to ascertain the frequency and type of chromosome abnormality by gestation and nuchal translucency measurement. An atypical chromosome abnormality was defined as any major chromosome abnormality other than whole chromosome aneuploidy involving chromosomes 21, 18, 13, X, and Y.
Results: Of the 81,244 singleton pregnancies undergoing combined first-trimester screening, 491 (0.60%) had a nuchal translucency of ≥3.5 mm, 534 (0.66%) had a nuchal translucency of 3.0 to 3.4 mm, and 80,219 (98.74%) had a nuchal translucency of < 3.0 mm. When grouped by nuchal translucency multiples of the median (MoM), 192 (0.24%) had a nuchal translucency of ≥3.0 MoM, 513 (0.63%) had a nuchal translucency of 1.9 to 2.9 MoM, and 80,539 (99.13%) had a nuchal translucency of <1.9 MoM. A total of 1779 pregnancies underwent prenatal or postnatal diagnostic testing, of which 89.60% were performed by whole-genome single-nucleotide polymorphism chromosomal microarray. The frequency of total major chromosome abnormalities was significantly higher in the group with a nuchal translucency of ≥3.5 mm (147 of 491, 29.94%) than the group with a nuchal translucency of 3.0 to 3.4 mm (21 of 534, 3.93%) or a nuchal translucency of <3.0 mm (71 of 80,219, 0.09%) (P<.001). There were 93 atypical chromosome abnormalities in the total screened cohort. The frequency of an atypical chromosome abnormality was 4.07% (95% confidence interval, 2.51-6.22), 0.37% (95% confidence interval, 0.05-1.35), and 0.09% (95% confidence interval, 0.07-0.11) in the groups with a nuchal translucency of ≥3.5 mm, 3.0 to 3.4 mm, and <3.0 mm, respectively. The frequency of atypical chromosome abnormalities was 4.69% (95% confidence interval, 2.17-8.71), 2.53% (95% confidence interval, 1.36-4.29), and 0.09% (95% confidence interval, 0.07-0.11) in the groups with a nuchal translucency of ≥3.0 MoM, 1.9 to 2.9 MoM, and <1.9 MoM, respectively. When defining thresholds for offering diagnosis with chromosomal microarray at 11 to 13 weeks, both a nuchal translucency threshold of 1.9 MoM and a fixed threshold of 3.0 mm captured 22 of 93 fetuses (23.7%) with an atypical chromosome abnormality. Of these, 50.0% had a coexisting fetal abnormality on ultrasound. However, the gestation-specific threshold of 1.9 MoM had a better specificity than 3.0 mm. The positive predictive value of an enlarged nuchal translucency for any atypical chromosome abnormality was 1 in 47 for nuchal translucency of >3.0 mm and 1 in 32 for nuchal translucency of >1.9 MoM. Our nuchal translucency threshold of 1.9 MoM captured 0.87% of fetuses, thus approximating the 99th centile.
Conclusion: A gestational age-adjusted nuchal translucency threshold of 1.9 MoM or 99th centile is superior to the fixed cutoff of 3.0 mm for the identification of atypical chromosome abnormalities. The risk of an atypical chromosome abnormality in a fetus with an enlarged nuchal translucency is more than tripled in the presence of an additional ultrasound abnormality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajog.2021.03.050 | DOI Listing |
Mol Genet Genomic Med
September 2025
Department of Maternal-Fetal Medicine, Augusta University, Augusta, Georgia, USA.
Introduction: Spinal muscular atrophy (SMA), caused by pathogenic variants in the survival motor neuron (SMN) gene, is the most common genetic cause of mortality in children under the age of two. Prior reports of obstetric sonograms performed in pregnancies with severe forms of fetal SMA have discrepant findings that may stem from a failure to account for the SMN2 copy number.
Methods: We present a neonate diagnosed with SMA type 0 postnatally (0SMN1/1SMN2 genotype).
Front Genet
August 2025
Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China.
Background: Chromosomal karyotype analysis remains a classical and frontline method in prenatal diagnosis, capable of detecting balanced chromosomal abnormalities and providing insights distinct from high-resolution molecular techniques such as CMA and CNV-Seq. However, large-scale studies on the distribution of structural abnormalities and mosaicism in amniotic fluid karyotypes are scarce, with most previous research focusing on common aneuploidies.
Objective: The study aimed to elucidate the relationship between chromosomal structural abnormalities and specific chromosomes.
Medicina (Kaunas)
July 2025
Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU, 31300 Toulouse, France.
: Doppler abnormalities in the ductus venosus (DV) during the first trimester can serve as an early marker for the detection of congenital heart defects (CHDs), but the feasibility of systematically assessing the DV remains underexplored. This study aimed to evaluate the feasibility of performing DV assessments during routine first-trimester ultrasound screenings. : A multicenter, prospective, and descriptive study was conducted, including singleton pregnancies undergoing routine ultrasound screening between 11 + 0 and 13 + 6 weeks of gestation.
View Article and Find Full Text PDFGenes (Basel)
July 2025
Medical Genetics and Genomic Unit, San Bortolo Hospital, 36100 Vicenza, Italy.
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare, often fatal congenital disorder characterized by severe neonatal respiratory distress and associated with complex multisystem malformations. In approximately 90% of cases, the condition is linked to deletions or mutations affecting the gene or its upstream enhancer region on chromosome 16q24.1.
View Article and Find Full Text PDFObjective: To investigate clinical significance, rate of genetic anomalies and fetal malformations in fetuses with dilated jugular lymphatic sacs (JLS) in the first trimester, overall and according to nuchal translucency (NT) thickness.
Methods: Retrospective multicenter cohort study of fetuses with dilated JLS at the first trimester scan. NT thickness, genetic evaluation, and fetal malformation data were collected.