98%
921
2 minutes
20
Herein, coralloid core-shell structure NiS/NiS@PPy@MoS nanowires were elaborately designed and successfully synthesized through a three-step route to obtain exceptional microwave absorption (MA) properties. Ni nanowires were first fabricated, and then used as the substrate to be coated with a layer of PPy. Ni chalcogenides were obtained by using Ni nanowire as sacrificial templates while growing MoS nanorods by hydrothermal method. Both the one-dimensional (1D) core-shell structure and the coralloid surface generated by MoS nanorods were beneficial for the attenuation of microwaves. After investigating the electromagnetic properties of different loading content absorbers (30 wt.%, 40 wt.% and 50 wt.%), it is found that the 50 wt.% loading absorber has the optimal MA performance. The minimum reflection loss (RL) value can reach -51.29 dB at 10.1 GHz with a thickness of 2.29 mm, and the corresponding effective absorption bandwidth (EAB, RL < -10 dB) can be up to 3.24 GHz. This research provides a reference for exploiting novel high-efficient 1D absorbers in the field of MA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.04.107 | DOI Listing |
Langmuir
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam 781039, India.
The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.
View Article and Find Full Text PDFInorg Chem
September 2025
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China.
Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Pd-zeolites are promising passive NO adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core-shell Pd/SSZ-13@AlO composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous AlO shell.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand-826004, India.
Here, Ln-Li co-doped YO@ZnO core-shell heterostructures were synthesized by three different techniques - intermediate layer conversion method, a hydrothermal method, and an interlayer mediated hydrothermal method. The synthesis procedure is optimized based on the thickness and compactness of the developed shell. The growth kinetics and synthesis mechanism of each adopted method have been explained in detail using XRD, FESEM, TEM, SAED, and EDX characterization techniques.
View Article and Find Full Text PDFNanoscale
September 2025
School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.
View Article and Find Full Text PDF