A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep Learning-based Approach for Automated Assessment of Interstitial Lung Disease in Systemic Sclerosis on CT Images. | LitMetric

Deep Learning-based Approach for Automated Assessment of Interstitial Lung Disease in Systemic Sclerosis on CT Images.

Radiol Artif Intell

Departments of Radiology (G.C., N.J., M.P.R.) and Physiology (T.H.H., A.T.D.X.), Hôpital Cochin, and Reference Center for Rare Systemic Autoimmune Diseases of Ile de France, Hôpital Cochin (A.R., N. Benmostefa, L.M.), Assistance Publique-Hôpitaux de Paris, Université de Paris, 27 Rue du Faubourg

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To develop a deep learning algorithm for the automatic assessment of the extent of systemic sclerosis (SSc)-related interstitial lung disease (ILD) on chest CT images.

Materials And Methods: This retrospective study included 208 patients with SSc (median age, 57 years; 167 women) evaluated between January 2009 and October 2017. A multicomponent deep neural network (AtlasNet) was trained on 6888 fully annotated CT images (80% for training and 20% for validation) from 17 patients with no, mild, or severe lung disease. The model was tested on a dataset of 400 images from another 20 patients, independently partially annotated by three radiologist readers. The ILD contours from the three readers and the deep learning neural network were compared by using the Dice similarity coefficient (DSC). The correlation between disease extent obtained from the deep learning algorithm and that obtained by using pulmonary function tests (PFTs) was then evaluated in the remaining 171 patients and in an external validation dataset of 31 patients based on the analysis of all slices of the chest CT scan. The Spearman rank correlation coefficient (ρ) was calculated to evaluate the correlation between disease extent and PFT results.

Results: The median DSCs between the readers and the deep learning ILD contours ranged from 0.74 to 0.75, whereas the median DSCs between contours from radiologists ranged from 0.68 to 0.71. The disease extent obtained from the algorithm, by analyzing the whole CT scan, correlated with the diffusion lung capacity for carbon monoxide, total lung capacity, and forced vital capacity (ρ -0.76, -0.70, and -0.62, respectively; < .001 for all) in the dataset for the correlation with PFT results. The disease extents correlated with diffusion lung capacity for carbon monoxide, total lung capacity, and forced vital capacity were ρ = -0.65, -0.70, and -0.57, respectively, in the external validation dataset ( < .001 for all).

Conclusion: The developed algorithm performed similarly to radiologists for disease-extent contouring, which correlated with pulmonary function to assess CT images from patients with SSc-related ILD.© RSNA, 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082359PMC
http://dx.doi.org/10.1148/ryai.2020190006DOI Listing

Publication Analysis

Top Keywords

deep learning
16
lung capacity
16
lung disease
12
disease extent
12
interstitial lung
8
systemic sclerosis
8
learning algorithm
8
neural network
8
images patients
8
ild contours
8

Similar Publications