Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep grey nuclei of the human brain accumulate minerals both in aging and in several neurodegenerative diseases. Mineral deposition produces a shortening of the transverse relaxation time which causes hypointensity on magnetic resonance (MR) imaging. The physician often has difficulties in determining whether the incidental hypointensity of grey nuclei seen on MR images is related to aging or neurodegenerative pathology. We investigated the hypointensity patterns in globus pallidus, putamen, caudate nucleus, thalamus and dentate nucleus of 217 healthy subjects (ages, 20-79 years; men/women, 104/113) using 3T MR imaging. Hypointensity was detected more frequently in globus pallidus (35.5%) than in dentate nucleus (32.7%) and putamen (7.8%). A consistent effect of aging on hypointensity (p < 0.001) of these grey nuclei was evident. Putaminal hypointensity appeared only in elderly subjects whereas we did not find hypointensity in the caudate nucleus and thalamus of any subject. In conclusion, the evidence of hypointensity in the caudate nucleus and thalamus at any age or hypointensity in the putamen seen in young subjects should prompt the clinician to consider a neurodegenerative disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10072-021-05292-1DOI Listing

Publication Analysis

Top Keywords

grey nuclei
16
caudate nucleus
12
nucleus thalamus
12
hypointensity
10
evidence hypointensity
8
aging neurodegenerative
8
globus pallidus
8
dentate nucleus
8
hypointensity caudate
8
nucleus
5

Similar Publications

The neural correlates of treatment-resistant depression (TRD) are not fully elucidated. Brainstem functional connectivity (FC) in TRD has rarely been investigated, despite the assumed role of several brainstem nuclei in depression. 23 patients and 23 sex- and age-matched healthy controls underwent resting-state functional MRI.

View Article and Find Full Text PDF

This report describes highly pathogenic avian influenza virus (HPAI) H5N1 infections in carnivores in Alaska, US between 2022 and 2024, including a black bear (Ursus americanus), a brown bear (Ursus arctos), and the first known report of HPAI in an ermine (Mustela ermina). The two bears were cubs, and the ermine was a young adult. The black bear and ermine were euthanized after demonstrating neurologic signs, including circling, blindness, ataxia, or seizures.

View Article and Find Full Text PDF

Whole-brain mapping of afferent and efferent connections of lateral hypothalamic orexinergic neurons in mice.

Brain Res

September 2025

Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou 510632, China. Electronic address:

Orexin (Orx) is a vital peptide neurotransmitter essential for regulating feeding, sleep-wake cycles, and reward-seeking behavior. Orexinergic neurons are predominantly located in the lateral hypothalamus (LH). However, the precise neural connectivity of these neurons across the brain remains insufficiently characterized.

View Article and Find Full Text PDF

The distal colon and rectum (colorectum) are innervated by two distinct spinal (splanchnic and pelvic) afferent nerve pathways. This study aimed to identify where the sensory information relayed by splanchnic and pelvic afferents integrates within the brainstem. Microinjection of transneuronal viral tracer (herpes simplex virus-1 H129 strain expressing EGFP, H129-EGFP) into the distal colon was used to assess the brainstem structures receiving ascending input from the colorectum.

View Article and Find Full Text PDF

Afferent Projections to the Paratenial Nucleus of the Dorsal Midline Thalamus.

J Comp Neurol

September 2025

Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA.

The dorsal midline thalamus (DMT) is composed of the paraventricular (PV) and paratenial (PT) nuclei. While the anatomical and functional properties of PV are well-established, PT has remarkably received very little attention-even though the efferent projections of PV and PT are very similar. Using a combination of retrograde tracing and immunohistochemistry, we examined the anatomical inputs to PT and compared them with those to the anterior and posterior PV and to the anterodorsal nucleus of the thalamus.

View Article and Find Full Text PDF