A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Rhamnolipids inhibit aflatoxins production in Aspergillus flavus by causing structural damages in the fungal hyphae and down-regulating the expression of their biosynthetic genes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aflatoxins are hepatotoxic and carcinogenic fungal secondary metabolites that usually contaminate crops and represent a serious health hazard for humans and animals worldwide. In this work, the effect of rhamnolipids (RLs) produced by Pseudomonas aeruginosa #112 on the growth and aflatoxins production by Aspergillus flavus MUM 17.14 was studied in vitro. At concentrations between 45 and 1500 mg/L, RLs reduced the mycelial growth of A. flavus by 23-40% and the production of aflatoxins by 93.9-99.5%. Purified mono-RLs and di-RLs exhibited a similar inhibitory activity on fungal growth. However, the RL mixture had a stronger inhibitory effect on aflatoxins production at concentrations up to 190 mg/L, probably due to a synergistic effect resulting from the combination of both congeners. Using transmission electron microscopy, it was demonstrated that RLs damaged the cell wall and the cytoplasmic membrane of the fungus, leading to the loss of intracellular content. This disruptive phenomenon explains the growth inhibition observed. Furthermore, RLs down-regulated the expression of genes aflC, aflE, aflP and aflQ involved in the aflatoxins biosynthetic pathway (6.4, 44.3, 38.1 and 2.0-fold, respectively), which is in agreement with the almost complete inhibition of aflatoxins production. Overall, the results herein gathered demonstrate for the first time that RLs could be used against aflatoxigenic fungi to attenuate the production of aflatoxins, and unraveled some of their mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109207DOI Listing

Publication Analysis

Top Keywords

aflatoxins production
16
aflatoxins
8
production aspergillus
8
aspergillus flavus
8
production aflatoxins
8
production
6
rls
5
rhamnolipids inhibit
4
inhibit aflatoxins
4
flavus causing
4

Similar Publications