Unveiling the High Catalytic Activity of a Dinuclear Iron Complex for the Oxygen Evolution Reaction.

Inorg Chem

Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dinuclear iron complex [(HO)-Fe-(ppq)-O-(ppq)-Fe-Cl] (Fe(ppq), ppq = 2-(pyrid-2'-yl)-8-(1″,10″-phenanthrolin-2″-yl)-quinoline) demonstrates a catalytic activity about one order of magnitude higher than the mononuclear iron complex [Cl-Fe(dpa)-Cl] (Fe(dpa), dpa = ,-di(1,10-phenanthrolin-2-yl)--isopentylamine) for the oxygen evolution reaction (OER). However, the mechanism behind such an unusually high activity has remained largely unclear. To solve this puzzle, a decomposition-and-reaction mechanism is proposed for the OER with the dinuclear Fe(ppq) complex as the initial state of the catalytic agent. In this mechanism, the high-valent dinuclear iron complex first dissociates into two mononuclear moieties, and the oxidized mononuclear iron complexes directly catalyze the formation of an O-O bond through a nitrate attack pathway with nitrate functioning as a cocatalyst. Density functional theory calculations reveal that it is the electron-deficient microenvironment around the iron center that gives rise to the remarkable catalytic activity observed experimentally. Therefore, the outstanding performance of the Fe(ppq) catalyst can be ascribed to the high reactivity of its mononuclear moieties in a high oxidation state, which is concomitant with the structural stability of the low-valent dinuclear complex. The theoretical insights provided by this study could be useful for the optimization and design of novel iron-based water oxidation catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c00394DOI Listing

Publication Analysis

Top Keywords

iron complex
16
catalytic activity
12
dinuclear iron
12
oxygen evolution
8
evolution reaction
8
mononuclear iron
8
mononuclear moieties
8
iron
6
complex
6
dinuclear
5

Similar Publications

This article presents a multiproxy investigation of metal samples obtained from 48 Nuragic figurines (so-called bronzetti) and three copper bun ingots. These objects originate from three prominent Sardinian sanctuaries and one unidentified site, dating to the late Nuragic period of the early first millennium BCE. The dataset significantly expands the existing scientific database and unwraps the complex fabrication biographies of the figurines from ore to finished object.

View Article and Find Full Text PDF

Density Functional Theory Study of Iron-Oxygen Divacancies in Magnetite (FeO) and Hematite (FeO).

J Phys Chem C Nanomater Interfaces

September 2025

Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.

Density functional theory (DFT) calculations are employed to investigate the formation energies, charge redistribution, and binding energies of iron-oxygen divacancies in magnetite (FeO) and hematite (FeO). For magnetite, we focus on the low-temperature phase to explore variations with local environments. Building on previous DFT calculations of the variations in formation energies for oxygen vacancies with local charge and spin order in magnetite, we extend this analysis to include octahedral iron vacancies before analyzing the iron-oxygen divacancies.

View Article and Find Full Text PDF

Neutral iron(III) and iron(II) complexes based on the pyruvic acid thiosemicarbazone (Hthpy) ligand [Fe(Hthpy)(thpy)] (1) and [Fe(Hthpy)] (2) were synthesized, and deeper insights into magneto-structural correlation were gained by FT-IR spectroscopy, single crystal X-ray crystallography, dc magnetic characterization, Fe Mössbauer spectroscopy, and DFT calculations. The X-ray structures of complex 1 were established for the HS ( = 5/2) state at 295 K and the LS ( = 1/2) state at 150 K. The crystal packing of 1 at these temperatures corresponds to the triclinic 1̄ symmetry and contains pairs of [Fe(Hthpy)(thpy)] complexes interconnected by a shortened S⋯S contact.

View Article and Find Full Text PDF

Bioactive Furan Derivatives from Streptomyces sp. VITGV100: Insights from in silico Docking and ADMET Profiling.

Curr Drug Discov Technol

September 2025

School of BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, Tamil Nadu, India.

Introduction: Streptomyces species have complex genomes, including various biosynthetic gene clusters, frequently responsible for producing antibacterial and bioactive secondary metabolites under certain environmental conditions. To assess the impact of Magnesium and Iron on Streptomyces sp. VITGV100 secondary metabolite production and bioactivity, including molecular docking studies to predict their therapeutic potential.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF