Diffusion-Weighted Imaging is Key to Diagnosing Specific Diseases.

Magn Reson Imaging Clin N Am

Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, 2-2, Yamada

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article reviews diseases for which persistent signal abnormalities on diffusion-weighted imaging are the key to their diagnosis. Specifically, updated knowledge regarding the neuroimaging patterns of the following diseases is summarized: sporadic Creutzfeldt-Jakob disease, neuronal intranuclear inclusion disease, and hereditary diffuse leukoencephalopathy with axonal spheroids-colony-stimulating factor receptors/adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In addition, their differential diagnoses; clinical manifestations; and pathologic, genetic, and imaging correlates are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mric.2021.02.001DOI Listing

Publication Analysis

Top Keywords

diffusion-weighted imaging
8
imaging key
8
leukoencephalopathy axonal
8
key diagnosing
4
diagnosing specific
4
specific diseases
4
diseases article
4
article reviews
4
reviews diseases
4
diseases persistent
4

Similar Publications

Purpose: This study sought to determine the intrasession repeatability of the diffusion-weighted (DW) arterial spin labeling (ASL) sequence at different postlabel delays (PLDs).

Methods: We first performed numerical simulations to study the accuracy of the two-compartment water exchange rate (Kw) fitting model with added Gaussian noise for DW PLDs at 1500, 1800, and 2100 ms. Ten young, healthy participants then underwent a structural T scan and two intrasession in vivo DW ASL scans at each PLD on a 3T MRI.

View Article and Find Full Text PDF

Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.

Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.

View Article and Find Full Text PDF

Mean apparent propagator MRI (MAP-MRI) quantifies subtle alterations in tissue microstructure noninvasively and provides a more nuanced and comprehensive assessment of tissue architectural and structural integrity compared with other diffusion MRI techniques. We investigate the sensitivity of MAP-MRI-derived quantitative imaging biomarkers to detect previously unseen microstructural damage in patients with mild traumatic brain injuries (mTBI), whose clinical scans otherwise appeared normal. We developed and validated an MAP-MRI data processing pipeline for analyzing diffusion-weighted images for use in healthy controls and mTBI patients whose longitudinal scans were obtained from the GE/NFL/mTBI MRI database.

View Article and Find Full Text PDF

Background And Objective: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognised cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal.

View Article and Find Full Text PDF

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF