Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Root-knot nematodes (RKNs) are major threats to crops through attacking the roots, which induces an abnormal development of the plant. is of particular concern, as it is currently expanding its distribution area and displays a wide host range. Effective plant protection against this RKN requires early detection, as even a single individual can cause severe economic losses on susceptible crops. Molecular tools are of particular value for this purpose, and among them, quantitative PCR (qPCR) presents many advantages (i.e., sensitivity, specificity, and rapidity of diagnosis at a reduced cost). Although a few studies have already been proposed for detecting through this technique, they lack experimental details and performance testing, suffer from low taxonomic resolution, and/or require expensive hydrolysis probes. Here, we propose a qPCR detection method that uses SYBR Green with developed primers amplifying a fragment of the mitochondrial region. The method was developed and evaluated following the minimum information for publication of quantitative real-time PCR experiments (MIQE) guidelines to ensure its quality (i.e., sensitivity, specificity, repeatability, reproducibility, and robustness). The results demonstrate that the newly developed method fulfills its goals, as it proved specific to and allowed for a reproductible detection level as low as 1.25 equivalent of a juvenile individual. All criteria associated with the MIQE guidelines were also met, so the method is of general use for the reliable early detection of .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-11-20-2408-RE | DOI Listing |