98%
921
2 minutes
20
The synthesis and antimicrobial activity of new spiro-β-lactams is reported. The design of the new molecules was based on the structural modulation of two previously identified lead spiro-penicillanates with dual activity against HIV and Plasmodium. The spiro-β-lactams synthesized were assayed for their in vitro activity against HIV-1, providing relevant structure-activity relationship information. Among the tested compounds, two spirocyclopentenyl-β-lactams were identified as having remarkable nanomolar activity against HIV-1. Additionally, the same molecules showed promising antiplasmodial activity, inhibiting both the hepatic and blood stages of Plasmodium infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2021.113439 | DOI Listing |
Sci Signal
September 2025
Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.
View Article and Find Full Text PDFPLoS Biol
September 2025
Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America.
Despite the success of antiretroviral therapy in suppressing plasma viremia in people living with human immunodeficiency virus type-1 (HIV-1), persistent viral RNA expression in tissue reservoirs is observed and can contribute to HIV-1-induced immunopathology and comorbidities. Infection of long-lived innate immune cells, such as tissue-resident macrophages and microglia may contribute to persistent viral RNA production and chronic inflammation. We recently reported that de novo cytoplasmic expression of HIV-1 intron-containing RNA (icRNA) in macrophages and microglia leads to MDA5 and MAVS-dependent innate immune sensing and induction of type I IFN responses, demonstrating that HIV icRNA is a pathogen-associated molecular pattern (PAMP).
View Article and Find Full Text PDFAntiviral Res
September 2025
Department of Immunology and Pathogen Biology, Key Laboratory of Pathogen and Host-Interactions, Ministry of Education, School of Medicine, Tongji University, Shanghai, 200331, China. Electronic address:
DMBT1 is a large scavenger receptor cysteine rich (SRCR) B protein that has been reported as a tumor suppressor gene and a co-receptor for HIV-1 infection. Here, we found DMBT1 is a major mucosal protein bound to SARS-CoV-2. Overexpression of DMBT1 in 293T cells may enhanced infection by SARS-CoV-2 in ACE2 dependent manner.
View Article and Find Full Text PDFAdministration of HIV-1 neutralizing antibodies can suppress viremia and prevent infection . However, clinical use is challenged by broad envelope sequence diversity and rapid emergence of viral escape . Here, we performed single B cell profiling of 32 top HIV-1 elite neutralizers to identify broadly neutralizing antibodies (bNAbs) with highest potency and breadth for clinical application.
View Article and Find Full Text PDFHIV-1 particle assembly depends critically on multiple proteolytic cleavages of viral polyproteins by the viral protease, PR. PR is translated as part of the Gag-Pro-Pol polyprotein, which undergoes autoproteolysis to liberate active, dimeric PR during virus particle maturation. Gag-Pro-Pol is produced via an infrequent -1 frameshifting event in ribosomes translating full length genomic RNA as Gag mRNA.
View Article and Find Full Text PDF