A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evolutionary structure prediction-assisted design of anode materials for Ca-ion battery based on phosphorene. | LitMetric

Evolutionary structure prediction-assisted design of anode materials for Ca-ion battery based on phosphorene.

Phys Chem Chem Phys

School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The utilization of multivalent ions such as Ca(ii), Mg(ii), and Al(iii) in energy storage devices opens up new opportunities to store energy density in a more efficient manner rather than monovalent Li or Na ion batteries. Active research on Ca(ii) has been limited due to the low diffusion rate of Ca within the lattice as well as the difficulty of the reversible electrodeposition of Ca in standard electrolytes at room temperature. Herein, using first-principles calculations, we have studied the applications of various allotropes of phosphorene (Pn) as potential materials for Ca(ii) battery (CIB). It is seen that among different forms, α and δ phases are suitable to act as anode materials for Ca ion battery. Apart from this, we have also studied the possible formation of various CaxPy phases during the calcination process since it is assumed that during metal insertion and extraction, anodes form non-equilibrium structures. Evolutionary Structure Prediction methods are extensively utilized to determine if the formation of these different CaxPy phases have a significant impact on the anodic performances of Pn or not. It is found that the CaxPy phases formed during the calcination process show reasonable average voltages as well as low volume change and high specific capacity, thus confirming the suitability of Pn as an excellent support for anodes in the Ca(ii) ion battery.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp00094bDOI Listing

Publication Analysis

Top Keywords

caxpy phases
12
evolutionary structure
8
anode materials
8
ion battery
8
formation caxpy
8
calcination process
8
structure prediction-assisted
4
prediction-assisted design
4
design anode
4
materials ca-ion
4

Similar Publications