A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optical-Switch-Enabled Microfluidics for Sensitive Multichannel Colorimetric Analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The implementation of colorimetric analysis within microfluidic environments engenders significant benefits with respect to reduced sample and reagent consumption, system miniaturization, and real-time measurement of flowing samples. That said, conventional approaches to colorimetric analysis within microfluidic channels are hampered by short optical pathlengths and single-channel configurations, which lead to poor detection sensitivities and low analytical throughputs. Although the use of multiplexed light source/photodetector modules allows for multichannel analysis, such configurations significantly increase both instrument complexity and cost. To address these issues, we present a four-channel colorimetric measurement scheme within an ptical-witch-nabled icrofluidic hip (OSEMC) fabricated by two-photon stereolithography. The integration of optical switches enables sequential signal readout from each detection channel, and thus, only a single light source and a photodetector are required for operation. Optical switches can be controlled in a bespoke manner by changing the medium in the switch channel between a "light-transmitting" fluid and a "light-blocking" fluid using pneumatic microvalves. Such optical switches are characterized by fast response times (approximately 200 ms), tunable switching frequencies (between 0.1 and 1.0 Hz studied), and excellent stability. Operational performance demonstrates both good sensitivity and reproducibility through the colorimetric analysis of nitrite and ammonium samples using four detection channels. Furthermore, the use of OSEMC for parallel and real-time analysis of flowing samples is investigated via characterization of the adsorption kinetics of tartrazine on activated charcoal and the catalytic reaction kinetics of horseradish peroxidase (HRP).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c00674DOI Listing

Publication Analysis

Top Keywords

colorimetric analysis
16
optical switches
12
analysis microfluidic
8
flowing samples
8
analysis
6
colorimetric
5
optical-switch-enabled microfluidics
4
microfluidics sensitive
4
sensitive multichannel
4
multichannel colorimetric
4

Similar Publications