A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

On-Chip Replication of Extremely Early-Stage Tumor Behavior. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer is a multistep progressive disease that generally involves tumor growth, invasion, and metastasis. It is crucial to understand tumor progression for tumor diagnosis and therapy. However, tumor progression at an extremely early stage (EES) is barely demonstrated because EES tumors are too small to be detected by imaging. Herein, we, for the first time, replicated tumor progression at the EES on a microfluidic chip and uncovered the tumor behaviors affected by the tumor microenvironment. To mimic the progression of a single solid tumor at the EES, a HeLa cell spheroid was seeded and cultured on the chip, and a microvascular network was developed to integrate the microphysiological contexts around the tumor. We revealed not only the growth patterns and cell behaviors of tumor spheroids of different sizes under angiogenesis and fibroblast conditions but also the effect of tumor progression on peritumoral angiogenesis. We found that smaller tumors were more aggressive and that endotheliocytes and fibroblasts significantly accelerated both the proliferation and migration of tumor cells. In addition, we also first present the dynamic epithelial-mesenchymal transition process of tumor cells and the formation of vasculogenic mimicry at the EES. This work can provide insights for understanding tumor progression at the EES and offer new ideas for tumor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c03740DOI Listing

Publication Analysis

Top Keywords

tumor progression
20
tumor
16
progression ees
8
behaviors tumor
8
tumor cells
8
progression
6
ees
6
on-chip replication
4
replication extremely
4
extremely early-stage
4

Similar Publications