98%
921
2 minutes
20
Transcranial direct current stimulation (tDCS) is a promising tool to enhance cognitive performance. However, its effectiveness has not yet been unequivocally shown. Thus, here we tested whether coupling tDCS with a bout of aerobic exercise (AE) is more effective in modulating cognitive functions than tDCS or AE alone. One hundred twenty-two healthy participants were assigned to five randomized controlled crossover experiments. Two multimodal target experiments (EXP-4: anodal vs. sham tDCS during AE; EXP-5: cathodal vs. sham tDCS during AE) investigated whether anodal (a-tDCS) or cathodal tDCS (c-tDCS) applied during AE over the left dorsolateral prefrontal cortex (left DLPFC) affects executive functioning (inhibition ability). In three unimodal control experiments, the participants were either stimulated (EXP-1: anodal vs. sham tDCS, EXP-2: cathodal vs. sham tDCS) or did AE (EXP-3: AE vs. active control). Participants performed an Eriksen flanker task during ergometer cycling at moderate intensity (in EXP. 3-5). Only c-tDCS during AE had a significant adverse effect on the inhibition task, with decreased accuracy. This outcome provides preliminary evidence that c-tDCS during AE over the left DLPFC might effectively modulate inhibition performance compared to c-tDCS alone. However, more systematic research is needed in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055664 | PMC |
http://dx.doi.org/10.1038/s41598-021-87914-4 | DOI Listing |
Front Hum Neurosci
September 2025
Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
Primary progressive aphasia (PPA) is a neurological syndrome characterized by the gradual deterioration of language capabilities. Due to its neurodegenerative nature, PPA is marked by a continuous decline, necessitating ongoing and adaptive therapeutic interventions. Recent studies have demonstrated that behavioral therapies, particularly when combined with neuromodulation techniques such as transcranial direct current stimulation (tDCS), can improve treatment outcomes, including the long-term maintenance and generalization of therapeutic effects.
View Article and Find Full Text PDFGait Posture
September 2025
School of Business, Social and Decision Sciences, Constructor University Bremen, Constructor University, Campus Ring 1, Bremen 28759, Germany.
Background: Age-related declines in dynamic balance and cognitive control increase fall risk in older adults (OA). Non-invasive brain stimulation, such as anodal transcranial direct current stimulation (a-tDCS), may enhance training outcomes. However, it remains unclear whether stimulation over motor or prefrontal regions is more effective for improving dynamic balance training (DBT) in OA.
View Article and Find Full Text PDFBMJ Open
September 2025
Faculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, Brazil.
Introduction: Osteoarthritis (OA) is a degenerative and progressive joint condition causing pain and disability. Physical exercise is recognised as the most effective intervention since individuals with this condition often experience muscle weakness, balance deficits and chronic pain. Additionally, knee osteoarthritis (KOA) is associated with central sensitisation, contributing to chronic pain conditions.
View Article and Find Full Text PDFJ Neurophysiol
September 2025
School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, USA.
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can alter the excitability of targeted brain regions and influence motor learning. For the first experiment, we studied the effects of several individual stimulation montages (2mA) on motor learning in a complex rhythm-timing video game task (n=79, M1 anodal tDCS [M1 a-tDCS], Cerebellar anodal tDCS [CB a-tDCS], Cerebellar cathodal tDCS [CB c-tDCS], and SHAM). Performance was assessed using a performance index (PI) incorporating keystroke timing accuracy, tap distribution ratio, and key error rate.
View Article and Find Full Text PDFAm J Phys Med Rehabil
September 2025
Department of Rehabilitation Medicine, Faculty of Medicine, Chulalongkorn University.
Objective: To study the effect of transcranial direct current stimulation (tDCS) on the left dorsolateral prefrontal cortex (DLPFC) plus exercise on pain, function, and quality of life in chronic knee osteoarthritis.
Design: Thirty-two participants with chronic knee osteoarthritis were randomly assigned to real tDCS (anode: left DLPFC, cathode: right supraorbital, 2 mA for 20 minutes) or sham treatment, with quadriceps exercises three times weekly for four weeks. Visual Analog Scale (VAS), pressure pain threshold (PPT), and the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and Short Form Health Survey-36 (SF-36), were assessed at baseline, post-treatment, and four weeks later.