A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhanced γ-phase crystallinity of AlO frameworks at the concave surface of PS--PEO templated spherical pores. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The crystallinity of inorganic solids like metal oxides after the porosity design is the crucial factor that should be investigated for enhancing their physicochemical properties. In most cases, metal oxide frameworks around mesopores, that are designed through the supramolecular mediated approach, are resulted to be amorphous. Accordingly, a rational guideline has been required for enhancing the crystallinity of frameworks at such concave surfaces. We have so far surveyed a crystallization behavior of alumina (Al2O3) frameworks to its γ-phase around spherical mesopores (∼40 nm) and discussed further transition to the α-phase around much larger pores (∼200 nm). In this paper, we prepared new and helpful Al2O3 powders having PS-b-PEO templated pores (∼25 nm and ∼75 nm) smaller than those of our previous case. After careful discussion of the pore size variation by considering the molecular structure of PS-b-PEO, we explained the crystallization behavior of the Al2O3 frameworks to enhance its γ-crystallinity. This knowledge is quite beneficial for designing highly porous Al2O3 powders with abundant crystallinity for use as catalyst supports, which is very useful for assessing synthetic procedures of other mesoporous metal oxides having high crystallinity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt00719jDOI Listing

Publication Analysis

Top Keywords

frameworks concave
8
metal oxides
8
crystallization behavior
8
al2o3 frameworks
8
al2o3 powders
8
crystallinity
5
frameworks
5
enhanced γ-phase
4
γ-phase crystallinity
4
crystallinity alo
4

Similar Publications