How does epigenetics influence the course of evolution?

Philos Trans R Soc Lond B Biol Sci

Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epigenetics is the study of changes in gene activity that can be transmitted through cell divisions but cannot be explained by changes in the DNA sequence. Epigenetic mechanisms are central to gene regulation, phenotypic plasticity, development and the preservation of genome integrity. Epigenetic mechanisms are often held to make a minor contribution to evolutionary change because epigenetic states are typically erased and reset at every generation, and are therefore, not heritable. Nonetheless, there is growing appreciation that epigenetic variation makes direct and indirect contributions to evolutionary processes. First, some epigenetic states are transmitted intergenerationally and affect the phenotype of offspring. Moreover, heritable 'epialleles' exist and are quite common in plants. Such epialleles could, therefore, be subject to natural selection in the same way as conventional DNA sequence-based alleles. Second, epigenetic variation enhances phenotypic plasticity and phenotypic variance and thus can modulate the effect of natural selection on sequence-based genetic variation. Third, given that phenotypic plasticity is central to the adaptability of organisms, epigenetic mechanisms that generate plasticity and acclimation are important to consider in evolutionary theory. Fourth, some genes are under selection to be 'imprinted' identifying the sex of the parent from which they were derived, leading to parent-of-origin-dependent gene expression and effects. These effects can generate hybrid disfunction and contribute to speciation. Finally, epigenetic processes, particularly DNA methylation, contribute directly to DNA sequence evolution, because they act as mutagens on the one hand and modulate genome stability on the other by keeping transposable elements in check. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059608PMC
http://dx.doi.org/10.1098/rstb.2020.0111DOI Listing

Publication Analysis

Top Keywords

epigenetic mechanisms
12
phenotypic plasticity
12
epigenetics influence
8
influence course
8
dna sequence
8
epigenetic
8
epigenetic states
8
epigenetic variation
8
natural selection
8
course evolution?
4

Similar Publications

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) is one of the most frequent head and neck cancers. The 4-nitroquinoline 1-oxide (4NQO) mouse model of oral carcinogenesis is a well-established model to investigate the mechanism behind OSCC development, including epigenetic alterations. Studies have shown that histone acetylation is a key regulator of gene expression and may play a role in such a tumor.

View Article and Find Full Text PDF

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Unraveling epigenetic drivers of immune evasion in gliomas: mechanisms and therapeutic implications.

Front Immunol

September 2025

Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.

Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.

View Article and Find Full Text PDF