A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Neuropathological correlation supports automated image-based differential diagnosis in parkinsonism. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Up to 25% of patients diagnosed as idiopathic Parkinson's disease (IPD) have an atypical parkinsonian syndrome (APS). We had previously validated an automated image-based algorithm to discriminate between IPD, multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). While the algorithm was accurate with respect to the final clinical diagnosis after long-term expert follow-up, its relationship to the initial referral diagnosis and to the neuropathological gold standard is not known.

Methods: Patients with an uncertain diagnosis of parkinsonism were referred for F-fluorodeoxyglucose (FDG) PET to classify patients as IPD or as APS based on the automated algorithm. Patients were followed by a movement disorder specialist and subsequently underwent neuropathological examination. The image-based classification was compared to the neuropathological diagnosis in 15 patients with parkinsonism.

Results: At the time of referral to PET, the clinical impression was only 66.7% accurate. The algorithm correctly identified 80% of the cases as IPD or APS (p = 0.02) and 87.5% of the APS cases as MSA or PSP (p = 0.03). The final clinical diagnosis was 93.3% accurate (p < 0.001), but needed several years of expert follow-up.

Conclusion: The image-based classifications agreed well with autopsy and can help to improve diagnostic accuracy during the period of clinical uncertainty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440366PMC
http://dx.doi.org/10.1007/s00259-021-05302-6DOI Listing

Publication Analysis

Top Keywords

automated image-based
8
diagnosis parkinsonism
8
final clinical
8
clinical diagnosis
8
ipd aps
8
diagnosis
6
patients
5
neuropathological
4
neuropathological correlation
4
correlation supports
4

Similar Publications