Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We examine how a complex transcription network composed of seven 'master' regulators and hundreds of target genes evolved over a span of approximately 70 million years. The network controls biofilm formation in several species, a group of fungi that are present in humans both as constituents of the microbiota and as opportunistic pathogens. Using a variety of approaches, we observed two major types of changes that have occurred in the biofilm network since the four extant species we examined last shared a common ancestor. Master regulator 'substitutions' occurred over relatively long evolutionary times, resulting in different species having overlapping but different sets of master regulators of biofilm formation. Second, massive changes in the connections between the master regulators and their target genes occurred over much shorter timescales. We believe this analysis is the first detailed, empirical description of how a complex transcription network has evolved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075579PMC
http://dx.doi.org/10.7554/eLife.64682DOI Listing

Publication Analysis

Top Keywords

complex transcription
12
transcription network
12
biofilm formation
12
formation species
8
target genes
8
master regulators
8
network
5
evolution complex
4
network controlling
4
biofilm
4

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Background: Stroke-prone spontaneously hypertensive rats (SHRSP) exhibit slow-twitch muscle-specific hypotrophy compared with normotensive Wistar-Kyoto rats (WKY). Because slow-twitch muscles are prone to disuse atrophy, SHRSP may experience both disuse atrophy and impaired recovery from it. This study investigated the response of SHRSP to disuse atrophy and subsequent recovery, using WKY as a control.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF

Nuclear biomolecular condensates are essential sub-compartments within the cell nucleus and play key roles in transcription and RNA processing. Bottom-up construction of nuclear architectures in synthetic settings is non-trivial but vital for understanding the mechanisms of condensates in real cellular systems. Here, we present a facile and versatile synthetic DNA protonucleus (PN) platform that facilitates localized transcription of branched RNA motifs with kissing loops (KLs) for subsequent condensation into complex condensate architectures.

View Article and Find Full Text PDF