98%
921
2 minutes
20
MAGI1 is an intracellular adaptor protein that stabilizes cell junctions and regulates epithelial and endothelial integrity. Here, we report that that in endothelial cells MAGI1 colocalizes with paxillin, β3-integrin, talin 1, tensin 3 and α-4-actinin at mature focal adhesions and actin stress fibers, and regulates their dynamics. Downregulation of MAGI1 reduces focal adhesion formation and maturation, cell spreading, actin stress fiber formation and RhoA/Rac1 activation. MAGI1 silencing increases phosphorylation of paxillin at Y118, an indicator of focal adhesion turnover. MAGI1 promotes integrin-dependent endothelial cells adhesion to ECM, reduces invasion and tubulogenesis and suppresses angiogenesis . Our results identify MAGI1 as anovel component of focal adhesions, and regulator of focal adhesion dynamics, cell adhesion, invasion and angiogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115569 | PMC |
http://dx.doi.org/10.1080/19336918.2021.1911472 | DOI Listing |
Medicine (Baltimore)
September 2025
Department of Orthopedic Surgery, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China.
The purpose of this study was to investigate potential therapeutic targets for osteosarcoma (OS) and offer hints regarding genetic factors for OS treatment using a bioinformatics method. This study processed 3 OS datasets from the gene expression omnibus database using R software, screening for differentially expressed genes (DEGs). After enrichment analysis, based on expression quantitative trait loci data and the genome-wide association study data of OS, Mendelian randomization analysis was used to screen the genes closely related to OS disease, which intersect with DEGs to obtain co-expressed genes, validation datasets were employed to verify the results.
View Article and Find Full Text PDFInt J Implant Dent
September 2025
Department of Periodontology, Center for Biomedical Education and Research (ZBAF), School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany.
Background: Guided bone regeneration (GBR) relies on biocompatible membranes to support osteogenesis. 1,4-butanediol diglycidyl ether (BDDE)-crosslinked hyaluronic acid (xHyA) has shown promise in enhancing bone regeneration, yet its mechanisms remain unclear.
Objective: This study evaluates the osteogenic effects of xHyA-functionalized native pericardium collagen membrane (NPCM) and ribose-crosslinked collagen membrane (RCCM) using an airlift culture model with SaOS-2 cells.
Lab Chip
September 2025
Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
Cell sorting is an important fundamental process for the selection and purification of target cell types for cell analysis in the life sciences and medical fields. In particular, demand is increasing for high-throughput cell sorting technology for the analysis of rare cells. Toward this end, we developed a centrifugal force-based cell sorting technique that relies on the adhesion force of cells as a marker.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China. Electronic address:
Malignant tumors present a major global health burden, as they generally have a poor prognosis, and the efficacy of available treatments is limited. Copine family members (CPNEs) play crucial roles in the regulation of tumor cell proliferation, metastasis, and therapeutic resistance, as well as in tumor diagnosis and prognostic risk stratification. CPNEs can facilitate tumor cell survival by regulating cell cycle progression and cell death.
View Article and Find Full Text PDFToxicol Appl Pharmacol
September 2025
Department of Environmental Hygiene and Toxicology, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China. Electronic address:
Phthalates (PEs) are widespread in environment, and human beings are unavoidably exposing to the mixture of PEs, which may induce male reproductive health risks. In order to investigate the mechanism of male reproductive injuries caused by the mixture of di-2-ethylhexyl phthalate, dibutyl phthalate and butyl benzyl phthalate (MPEs), male rats were orally exposed to 16 mg/kg/d MPEs (L-MPEs) and 450 mg/kg/d MPEs (H-MPEs) for 90 days, and the results showed that MPEs decreased the weights of testes, epididymis and periepididymis fat, decreased serum levels of male hormones, increased abnormal sperm rate, and caused testicular histopathological damages, such as atrophy and cavitation of seminiferous tubules, spermatids exfoliation, Leydig cells hyperplasia and accumulation of lipid droplets in the testicular interstitium. Testicular transcriptomic analysis identified 100 differently expressed genes (DEGs) in L-MPEs group and 10,880 DEGs in H-MPEs group, and these DEGs mainly involved in signaling pathways of focal adhesion, PI3K-Akt, AGE-RAGE, axon guidance, PPAR, MAPK and etc.
View Article and Find Full Text PDF