A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Vibration monitoring based on optical sensing of mechanical nonlinearities in glass suspended waveguides. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vibration monitoring plays a key role in numerous applications, including machinery predictive maintenance, shock detection, space applications, packaging-integrity monitoring and mining. Here, we investigate mechanical nonlinearities inherently present in suspended glass waveguides as a means for optically retrieving key vibration pattern information. The principle is to use optical phase changes in a coherent light signal travelling through the suspended glass waveguide to measure both optical path elongation and stress build-up caused by a given vibration state. Due to the intrinsic non-linear mechanical properties of double-clamped beams, we show that this information not only offers a means for detecting excessive vibrations but also allows for identifying specific vibration patterns, such as positive or negative chirp, without the need for any additional signal processing. In addition, the manufacturing process based on femtosecond laser exposure and chemical etching makes this sensing principle not only simple, compact and robust to harsh environments but also scalable to a broad frequency range.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.414191DOI Listing

Publication Analysis

Top Keywords

vibration monitoring
8
mechanical nonlinearities
8
suspended glass
8
vibration
5
monitoring based
4
based optical
4
optical sensing
4
sensing mechanical
4
nonlinearities glass
4
glass suspended
4

Similar Publications