98%
921
2 minutes
20
In our previous study, we showed that with increasing time in culture, the growth characteristics of enteric neural crest-derived cells (ENCCs) change, and that the proliferation, migration and neural differentiation potential of these cells in vitro notably diminish. However, there are no studies on the developmental differences in these characteristics between fetal and early-postnatal stages in vitro or in vivo. In this study, we isolated fetal (embryonic day 14.5) and postnatal (postnatal day 2) ENCCs from the intestines of rats. Fetal ENCCs had greater maximum cross-sectional area of the neurospheres, stronger migration ability, and reduced apoptosis, compared with postnatal ENCCs. However, fetal and postnatal ENCCs had a similar differentiation ability. Fetal and postnatal ENCCs both survived after transplant into a rat model of Hirschsprung's disease. In these rats with Hirschsprung's disease, the number of ganglionic cells in the myenteric plexus was higher and the distal intestinal pressure change was greater in animals treated with fetal ENCCs compared with those treated with postnatal ENCCs. These findings suggest that, compared with postnatal ENCCs, fetal ENCCs exhibit higher survival and proliferation and migration abilities, and are therefore a more appropriate seed cell for the treatment of Hirschsprung's disease. This study was approved by the Animal Ethics Committee of the Second Affiliated Hospital of Xi'an Jiaotong University (approval No. 2016086) on March 3, 2016.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354115 | PMC |
http://dx.doi.org/10.4103/1673-5374.310701 | DOI Listing |
Neural Regen Res
November 2021
Department of Pediatric Surgery, the Second Affiliated Hospital; Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
In our previous study, we showed that with increasing time in culture, the growth characteristics of enteric neural crest-derived cells (ENCCs) change, and that the proliferation, migration and neural differentiation potential of these cells in vitro notably diminish. However, there are no studies on the developmental differences in these characteristics between fetal and early-postnatal stages in vitro or in vivo. In this study, we isolated fetal (embryonic day 14.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2017
Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK.
The prospect of using neural cell replacement for the treatment of severe enteric neuropathies has seen significant progress in the last decade. The ability to harvest and transplant enteric neural crest cells (ENCCs) that functionally integrate within recipient intestine has recently been confirmed by in vivo murine studies. Although similar cells can be harvested from human fetal and postnatal gut, no studies have as yet verified their functional viability upon in vivo transplantation.
View Article and Find Full Text PDFDev Biol
September 2016
Laboratory for Enteric NeuroScience (LENS), Translational Research Centre for Gastrointestinal Disorders (TARGID), KU Leuven, 3000 Leuven, Belgium. Electronic address:
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract.
View Article and Find Full Text PDFExp Cell Res
May 2016
Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an 710004, Shaanxi, China. Electronic address:
A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures.
View Article and Find Full Text PDFPLoS One
July 2016
Stem Cells and Regenerative Medicine, UCL Institute of Child Health, 30 Guilford Street, London, United Kingdom.
Objectives: Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.
Design: Neurospheres generated from yellow fluorescent protein (YFP) expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B).