98%
921
2 minutes
20
Many pairwise additive force fields are in active use for intrinsically disordered proteins (IDPs) and regions (IDRs), some of which modify energetic terms to improve the description of IDPs/IDRs but are largely in disagreement with solution experiments for the disordered states. This work considers a new direction-the connection to configurational entropy-and how it might change the nature of our understanding of protein force field development to equally well encompass globular proteins, IDRs/IDPs, and disorder-to-order transitions. We have evaluated representative pairwise and many-body protein and water force fields against experimental data on representative IDPs and IDRs, a peptide that undergoes a disorder-to-order transition, for seven globular proteins ranging in size from 130 to 266 amino acids. We find that force fields with the largest statistical fluctuations consistent with the radius of gyration and universal Lindemann values for folded states simultaneously better describe IDPs and IDRs and disorder-to-order transitions. Hence, the crux of what a force field should exhibit to well describe IDRs/IDPs is not just the balance between protein and water energetics but the balance between energetic effects and configurational entropy of folded states of globular proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037987 | PMC |
http://dx.doi.org/10.3390/ijms22073420 | DOI Listing |
Langmuir
September 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Force prediction is crucial for functional rehabilitation of the upper limb. Surface electromyography (sEMG) signals play a pivotal role in muscle force studies, but its non-stationarity challenges the reliability of sEMG-driven models. This problem may be alleviated by fusion with electrical impedance myography (EIM), an active sensing technique incorporating tissue morphology information.
View Article and Find Full Text PDFMed Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
September 2025
French Military Medical Service Academy - École du Val-de-Grâce, Paris, France.
Background: Delivering intensive care in conflict zones and other resource-limited settings presents unique clinical, logistical, and ethical challenges. These contexts, characterized by disrupted infrastructure, limited personnel, and prolonged field care, require adapted strategies to ensure critical care delivery under resource-limited settings.
Objective: This scoping review aims to identify and characterize medical innovations developed or implemented in recent conflicts that may be relevant and transposable to intensive care units operating in other resource-limited settings.
Nucleic Acids Res
September 2025
Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic.
RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.
View Article and Find Full Text PDF