Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prostate apoptosis response-4 (Par-4) is a proapoptotic tumor suppressor protein that has been linked to a large number of cancers. This 38 kilodalton (kDa) protein has been shown to be predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate the 25 kDa functionally active cleaved Par-4 protein (cl-Par-4) that inhibits NF-κB-mediated cell survival pathways and causes selective apoptosis in tumor cells. Here, we have employed circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) to assess the effects of various monovalent and divalent salts upon the conformation of cl-Par-4 in vitro. We have previously shown that high levels of sodium can induce the cl-Par-4 fragment to form highly compact, highly helical tetramers in vitro. Spectral characteristics suggest that most or at least much of the helical content in these tetramers are non-coiled coils. Here, we have shown that potassium produces a similar effect as was previously reported for sodium and that magnesium salts also produce a similar conformation effect, but at an approximately five times lower ionic concentration. We have also shown that anion identity has far less influence than does cation identity. The degree of helicity induced by each of these salts suggests that the "Selective for Apoptosis in Cancer cells" (SAC) domain-the region of Par-4 that is most indispensable for its apoptotic function-is likely to be helical in cl-Par-4 under the studied high salt conditions. Furthermore, we have shown that under medium-strength ionic conditions, a combination of high molecular weight aggregates and smaller particles form and that the smaller particles are also highly helical, resembling at least in secondary structure, the tetramers found at high salt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998163PMC
http://dx.doi.org/10.3390/biom11030386DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
8
highly helical
8
high salt
8
smaller particles
8
cl-par-4
5
structural analysis
4
analysis cl-par-4
4
cl-par-4 tumor
4
suppressor function
4
function ionic
4

Similar Publications

The p53 transcription factor family consists of the three members p53, p63, and p73. Both p63 and p73 exist in different isoforms that are well characterized. Isoforms have also been identified for p53 and it has been proposed that they are responsible for increased cancer metastasis.

View Article and Find Full Text PDF

Background And Aims: Hepatocellular carcinoma (HCC) has a poor prognosis and limited treatment options. TGF-β is a promising therapeutic target, but its dual role, as both a tumour suppressor and promoter, complicates its clinical application. While its effects on tumour cells are increasingly understood, its impact on the tumour stroma remains unclear.

View Article and Find Full Text PDF

Aim    Search for subclinical manifestations of cardiotoxicity in cancer patients at high and very high risk of cardiotoxicity and evaluation of the effectiveness of drug primary prevention during the antitumor treatment. Material and methods    The study included 150 cancer patients with a high and very high Mayo Clinic (USA) Cardiotoxicity Risk Score. The main group consisted of 84 patients at high and very high risk of cardiotoxicity who were prescribed cardioprotective therapy, including a fixed combination of the angiotensin-converting enzyme inhibitor (ACEI) perindopril and the beta-blocker bisoprolol with trimetazidine.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is the fourth leading cause of cancer-related death globally. Tumor profiling has revealed actionable gene alterations that guide treatment strategies and enhance survival. Among Hispanics living in Puerto Rico (PRH), GC ranks among the top 10 causes of cancer-related death.

View Article and Find Full Text PDF