A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Human Milk Exosomal MicroRNA: Associations with Maternal Overweight/Obesity and Infant Body Composition at 1 Month of Life. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Among all the body fluids, breast milk is one of the richest sources of microRNAs (miRNAs). MiRNAs packaged within the milk exosomes are bioavailable to breastfeeding infants. The role of miRNAs in determining infant growth and the impact of maternal overweight/obesity on human milk (HM) miRNAs is poorly understood. The objectives of this study were to examine the impact of maternal overweight/obesity on select miRNAs (miR-148a, miR-30b, miR-29a, miR-29b, miR-let-7a and miR-32) involved in adipogenesis and glucose metabolism and to examine the relationship of these miRNAs with measures of infant body composition in the first 6 months of life. Milk samples were collected from a cohort of 60 mothers (30 normal-weight [NW] and 30 overweight [OW]/obese [OB]) at 1-month and a subset of 48 of these at 3 months of lactation. Relative abundance of miRNA was determined using real-time PCR. The associations between the miRNAs of interest and infant weight and body composition at one, three, and six months were examined after adjusting for infant gestational age, birth weight, and sex. The abundance of miR-148a and miR-30b was lower by 30% and 42%, respectively, in the OW/OB group than in the NW group at 1 month. miR-148a was negatively associated with infant weight, fat mass, and fat free mass, while miR-30b was positively associated with infant weight, percent body fat, and fat mass at 1 month. Maternal obesity is negatively associated with the content of select miRNAs in human milk. An association of specific miRNAs with infant body composition was observed during the first month of life, suggesting a potential role in the infant's adaptation to enteral nutrition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066780PMC
http://dx.doi.org/10.3390/nu13041091DOI Listing

Publication Analysis

Top Keywords

body composition
16
human milk
12
maternal overweight/obesity
12
infant body
12
infant weight
12
mirnas
9
infant
8
month life
8
impact maternal
8
select mirnas
8

Similar Publications