98%
921
2 minutes
20
The use of long-acting gonadotropin-releasing hormone (GnRH) agonists to suppress fertility has been poorly investigated in reptiles, and the few available studies show inconsistent results. The efficacy of single and double intramuscular 4.7 mg deslorelin acetate implants in captive pond sliders () was investigated, with 20 animals divided into three groups: a single-implant group (6 animals), a double-implant group (6 animals), and a control group (no implant). During one reproductive season (March to October), plasmatic concentration of sexual hormones (estradiol, progesterone, and testosterone) and ovarian morphometric activity via computed tomography were monitored about every 30 days. A significative decrease in the number of phase II ovarian follicles was detected in the double-implant group compared with the control group, but no significant difference was noted in the number of phase III and phase IV follicles, egg production, and plasmatic concentration of sexual hormones. Results show that neither a single nor a double deslorelin acetate implant can successfully inhibit reproduction in female pond sliders during the ongoing season, but the lower number of phase II follicles in the double-implant group can possibly be associated with reduced fertility in the following seasons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998188 | PMC |
http://dx.doi.org/10.3390/ani11030660 | DOI Listing |
J Intensive Care Med
September 2025
Division of Critical Care Medicine, Department of Medicine, The Queen's Medical Center, Honolulu, HI, USA.
PurposeTo summarize the currently available evidence regarding the effectiveness and safety of extracorporeal membrane oxygenation (ECMO) cannulation performed by intensivists.MethodsWe conducted a systematic search of MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials for studies of any design in which patients underwent ECMO cannulation by intensivists. The search was updated on Dec 15, 2024.
View Article and Find Full Text PDFJ Med Chem
September 2025
Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9 Montréal, Québec, Canada.
DNA polymerase theta (Polθ) plays a critical role in repairing DNA double-strand breaks through microhomology-mediated end joining (MMEJ) and has emerged as a key synthetic lethal drug target in cancers with homologous recombination (HR) deficiencies. Its inhibition has shown a strong potential to synergize with PARP inhibitors, particularly in tumors with deleterious or mutations. Here, we describe the discovery and preclinical development of RP-2119, a selective, potent, and bioavailable Polθ ATPase inhibitor.
View Article and Find Full Text PDFElife
September 2025
Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
DNA replication requires recruitment of Cdc45 and GINS into the MCM double hexamer by initiation factors to form an active helicase, the Cdc45-MCM-GINS (CMG) complex, at the replication origins. The initiation factor Sld3 is a central regulator of Cdc45 and GINS recruitment, working with Sld7 together. However, the mechanism through which Sld3 regulates CMG complex formation remains unclear.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
An improved rotational characterization of the E3Σ1+(63S1) Rydberg state of the CdAr diatom produced in a supersonic beam and studied using laser induced fluorescence (LIF) excitation spectra is presented. As an example, the spectra of the E3Σ1+←A3Π0+(53P1) transition, originating from the excitation of a single 116Cd40Ar isotopologue, are recorded and analyzed. In the experiment, the optical-optical double resonance method is employed, utilizing the E3Σ1+(υ')←A3Π0+(53P1)(υ″=6)←X1Σ0+(υ=0) scheme.
View Article and Find Full Text PDFJ Virol
September 2025
Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Double-stranded RNA (dsRNA), which induces an innate immune response against viral infections, is rarely detected in influenza A virus (IAV)-infected cells. Nevertheless, we previously reported that the influenza A viral ribonucleoprotein (vRNP) complex generates looped dsRNAs during RNA synthesis . This finding suggests that IAV possesses a specific mechanism for sequestering dsRNA within infected cells, thereby enabling viral evasion of the innate immune response.
View Article and Find Full Text PDF