Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Both diabetes mellitus and osteoporosis constitute a notable burden in terms of quality of life and healthcare costs. Diabetes mellitus affecting the skeletal system has been gaining attention in recent years and is now getting recognized as yet another complication of the disease, known as diabetic bone disease. As this condition with weaker bone strength increases fracture risk and reduces the quality of life, so much attention is being paid to investigate the molecular pathways through which both diabetes and its therapy are affecting bone metabolism. Out of many therapeutic agents currently available for managing diabetes mellitus, metformin is one of the most widely accepted first choices worldwide. The purpose of this review is to describe the effects of biguanide-metformin on bone metabolism in type 2 diabetes mellitus including its plausible mechanisms of action on the skeleton. In vitro studies suggest that metformin directly stimulates osteoblasts differentiation and may inhibit osteoclastogenesis by increasing osteoprotegerin expression, both through activation of the AMPK signaling pathway. Several studies in both preclinical and clinical settings report the favorable effects of metformin on bone microarchitecture, bone mineral density, bone turnover markers, and fracture risk. However, animal studies were not specific in terms of the diabetic models used and clinical studies were associated with several confounders. The review highlights some of these limitations and provide future recommendations for research in this area which is necessary to better understand the role of metformin on skeletal outcomes in diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-021-00805-8DOI Listing

Publication Analysis

Top Keywords

diabetes mellitus
16
bone
8
quality life
8
fracture risk
8
bone metabolism
8
diabetes
7
metformin
5
metformin well
4
well wisher
4
wisher bone
4

Similar Publications

Oxidative stress and ferroptosis in diabetic cardiomyopathy: mechanistic interplay and therapeutic implications.

Apoptosis

September 2025

The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou, 646000, China.

Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes mellitus, characterized by pathological changes such as cardiomyocyte hypertrophy, necrosis, and myocardial fibrosis, which can ultimately lead to heart failure. However, its underlying mechanisms remain incompletely understood, limiting the development of effective therapeutic approaches. In recent years, the critical roles of oxidative stress and ferroptosis in the pathogenesis of DCM have attracted increasing attention.

View Article and Find Full Text PDF

Objective: To investigate adverse pregnancy and delivery outcomes in women with GDMA1 during pregnancies conceived through fertility treatments.

Methods: This population-based retrospective cohort study examined adverse pregnancy and delivery outcomes in pregnancies affected by GDMA1 following fertility treatments compared to those conceived naturally. Women with GDMA1 who conceived via fertility treatments were classified as cases, while those who conceived naturally were designated as controls.

View Article and Find Full Text PDF

Liraglutide is a key therapeutic agent in managing type 2 diabetes mellitus (T2DM), with benefits extending beyond glycemic control to address cardiovascular and renal comorbidities. As T2DM prevalence rises globally, the need for medications that provide comprehensive health benefits becomes increasingly important. Liraglutide, a GLP-1 receptor agonist, has demonstrated effectiveness in reducing cardiovascular events, especially among patients with high cardiovascular risk, such as those with a prior history of myocardial infarction or stroke.

View Article and Find Full Text PDF