Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Noodles were prepared using wheat flour supplemented with 1%, 3%, and 5% grape seed power (GSP). The farinograph properties of wheat flour, the textural properties of the dough, and thermal properties of the gluten were determined. The microstructure was analyzed by scanning electron and atomic force microscopy, and the effects of the addition of GSP on the physicochemical and structural properties (free sulfhydryl content, surface hydrophobic region, and secondary structure) of wheat gluten protein were analyzed. 1% GSP promoted the aggregation of gluten proteins by promoting hydrophobic interactions and hydrogen bonding, thus enhanced the noodle quality. Whereas, 3% and 5% GSP addition disrupted the disulfide bonds between gluten protein molecules and formed macromolecular aggregates linked to gluten proteins through non-covalent bonds and hydrophobic interactions, which prevented the formation of the gluten protein reticulation structure. Our study emphasized the interaction between wheat proteins and GSP in noodle making dough.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.129500 | DOI Listing |