A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Incorporating Uncertainty in Data Labeling into Automatic Detection of Interictal Epileptiform Discharges from Concurrent Scalp-EEG via Multi-way Analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interictal epileptiform discharges (IEDs) are elicited from an epileptic brain, whereas they can also be due to other neurological abnormalities. The diversity in their morphologies, their strengths, and their sources within the brain cause a great deal of uncertainty in their labeling by clinicians. The aim of this study is therefore to exploit and incorporate this uncertainty (the probability of the waveform being an IED) in the IED detection system which combines spatial component analysis (SCA) with the IED probabilities referred to as SCA-IEDP-based method. For comparison, we also propose and study SCA-based method in which probability of the waveform being an IED is ignored. The proposed models are employed to detect IEDs in two different classification approaches: (1) subject-dependent and (2) subject-independent classification approaches. The proposed methods are compared with two other state-of-the-art methods namely, time-frequency features and tensor factorization methods. The proposed SCA-IEDP model has achieved superior performance in comparison with the traditional SCA and other competing methods. It achieved 79.9% and 63.4% accuracy values in subject-dependent and subject-independent classification approaches, respectively. This shows that considering the IED probabilities in designing an IED detection system can boost its performance.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0129065721500192DOI Listing

Publication Analysis

Top Keywords

classification approaches
12
interictal epileptiform
8
epileptiform discharges
8
probability waveform
8
waveform ied
8
ied detection
8
detection system
8
ied probabilities
8
subject-dependent subject-independent
8
subject-independent classification
8

Similar Publications