Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Bovine tuberculosis (TB) is caused by , a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of have not been performed in Korea.

Objectives: To survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean field isolates and to define groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing.

Methods: A total of 46 field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs.

Results: We identified 34 SNP sites with different frequencies across isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes.

Conclusions: Through SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007439PMC
http://dx.doi.org/10.4142/jvs.2021.22.e24DOI Listing

Publication Analysis

Top Keywords

field isolates
12
epidemiological analysis
8
snp typing
8
snp sites
8
snp analysis
8
snp
7
isolates
5
single-nucleotide polymorphism-based
4
polymorphism-based epidemiological
4
analysis
4

Similar Publications

Field Driven Solid-State Defect Control of Bilayer Switching Devices: Ionic Transport Kinetics within Layers and across the Interfaces.

ACS Appl Mater Interfaces

September 2025

Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Nanoionic devices, crucial for neuromorphic computing and ionically enabled functional actuators, are often kinetically limited. In bilayer configurations, experimentally deconvoluting ion transport within individual layers from the kinetics of transfer across solid-solid interfaces, however, remains a challenge, hindering rational device optimization. Here, we extend the dynamic current-voltage (-) technique to a PrCeO/LaCeCuO (PCO/LCCO) bilayer system, enabling the isolation and quantification of distinct ion transport processes.

View Article and Find Full Text PDF

Boron toxicity and salinity are major abiotic stress factors that cause significant yield losses, particularly in arid and semi-arid regions. Hyperaccumulator plants, such as Puccinella distans (Jacq.) Parl.

View Article and Find Full Text PDF

The argan tree (Argania spinosa L. Skeels), native to the sub-Saharan region of Morocco, is an endangered agroforestry species renowned for producing one of the world's most expensive and sought-after oils. However, this valuable resource is threatened by the Mediterranean fruit fly (Ceratitis capitata (Wied.

View Article and Find Full Text PDF

Investigating hazard exposures and safety dynamics among researchers in academic settings: Insights from a large-scale survey study.

J Safety Res

September 2025

Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Introduction: Researchers, whether working in wet-labs, dry-labs, clinical settings, or field environments, encounter various hazards. However, there has been limited study on the health and safety of academic researchers. This study aimed to investigate hazardous occupational exposures and safety among researchers in academic settings at a large U.

View Article and Find Full Text PDF

Ionic liquids (ILs) have been gaining increasing focus in a variety of applications including emerging electric-propulsion concepts. A quantitative understanding of how IL ions fragment during high-energy collisions with background gases is therefore essential for interpreting mass spectra, predicting ion lifetimes in plasma and vacuum environments, and designing IL-based technologies. This work uses molecular dynamics (MD) simulations with a reactive force field to numerically model the collision-induced dissociation (CID) of isolated ions (both positive and negative) and ion clusters (2:1 and 1:2 clusters) of the prototypical ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF), colliding with a nitrogen (N) molecule, exploring all possible fragmentation channels arising from the breaking of both ionic and covalent bonds at collision energies ranging from 10 electron volts (eV) to 100 electron volts (eV) in the laboratory frame.

View Article and Find Full Text PDF