Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The endothelial-to-mesenchymal transition (EndMT) is an important source of fibrotic cells in idiopathic pulmonary fibrosis (IPF). However, how endothelial cells (ECs) are activated and how EndMT impact IPF remain largely elusive. Here, we use unsupervised pseudotemporal analysis to recognize the heterogeneity of ECs and reconstruct EndMT trajectory of bleomycin (BLM)-treated Tie2;Rosa26 IPF mice. Genes like C3ar1 and Lgals3 (protein name galectin-3) are highly correlated with the transitional pseudotime, whose expression is gradually upregulated during the fate switch of ECs from quiescence to activation in fibrosis. Inhibition of galectin-3 via siRNA or protein antagonists in mice could alleviate the pathogenesis of IPF and the transition of ECs. With the stimulation of human pulmonary microvascular endothelial cells (HPMECs) by recombinant proteins and/or siRNAs for galectin-3 in vitro, β-catenin/GSK3β signaling and its upstream regulator AKT are perturbed, which indicates they mediate the EndMT progress. These results suggest that EndMT is essential to IPF process and provide potential therapeutic targets for vascular remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998015PMC
http://dx.doi.org/10.1038/s41419-021-03603-0DOI Listing

Publication Analysis

Top Keywords

endothelial-to-mesenchymal transition
8
pulmonary fibrosis
8
endothelial cells
8
endmt
5
ipf
5
trajectory modeling
4
modeling endothelial-to-mesenchymal
4
transition reveals
4
galectin-3
4
reveals galectin-3
4

Similar Publications

Endothelial-to-mesenchymal transition (EndMT) is a critical contributor of renal fibrosis in diabetic kidney disease (DKD). Asiatic acid (AA), a natural triterpenoid compound, exhibits notable endothelial protective and anti-fibrotic properties; however, its impact on EndMT in DKD remains unclear. This study aimed to investigate the therapeutic effect of AA against EndMT in DKD and the underlying mechanisms.

View Article and Find Full Text PDF

Organelle stresses and energetic metabolisms promote endothelial-to-mesenchymal transition and fibrosis via upregulating FOSB and MEOX1 in Alzheimer's disease.

Front Mol Neurosci

August 2025

Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.

Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.

Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.

View Article and Find Full Text PDF

Reviewing the Developing Significance of the Serine Protease PRSS23.

Front Biosci (Landmark Ed)

August 2025

Institute of Genomic Medicine Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.

The serine protease 23 (PRSS23) is a highly conserved member of trypsin-like serine proteases, which are associated with numerous essential processes, including digestion, blood coagulation, fibrinolysis, development, fertilization, apoptosis, and immunity. Original reports on PRSS23 unfolded not earlier than 2006 when a molecular biology study characterized and described PRSS23 as an ovarian protease. Then, in 2012, another important study was published linking PRSS23 with proliferation of breast cancer cells by an estrogen receptor 1 (ESR1)-dependent transcriptional activation of the serine protease.

View Article and Find Full Text PDF

Decoding vascular dysfunction in systemic sclerosis: from endothelial damage to clinical implications.

Curr Opin Rheumatol

September 2025

Division of Rheumatology, Department of Internal Medicine.

Purpose Of Review: This review explores the evolving understanding of vascular dysfunction in systemic sclerosis (SSc), from early endothelial injury to clinical manifestations and emerging therapeutic strategies.

Recent Findings: Endothelial cell (EC) injury, senescence, and endothelial-to-mesenchymal transition are central to SSc vasculopathy. Single-cell and spatial omics have revealed distinct EC subtypes and dysregulated pathways, including interferon signaling and chromatin remodeling.

View Article and Find Full Text PDF

Endothelial to mesenchymal transition: a central mechanism in diabetes-induced vascular pathology.

Korean J Physiol Pharmacol

September 2025

Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.

Diabetes mellitus is a major global health concern associated with micro-and macrovascular complications. Among the diverse mechanisms that contribute to vascular dysfunction in diabetes, endothelial to mesenchymal transition (EndMT) has emerged as a key pathological process. EndMT involves the loss of endothelial cell characteristics and the acquisition of mesenchymal features, resulting in impaired endothelial function, increased fibrosis, and inflammation.

View Article and Find Full Text PDF