Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: COVID-19 Convalescent plasma (CCP) is safe and effective, particularly if given at an early stage of the disease. Our study aimed to identify an association between survival and specific antibodies found in CCP.

Patients And Methods: Patients ≥18 years of age who were hospitalized with moderate to severe COVID-19 infection and received CCP at the MD Anderson Cancer Center between 4/30/2020 and 8/20/2020 were included in the study. We quantified the levels of anti-SARS-CoV-2 antibodies, as well as antibodies against antigens of other coronavirus strains, in the CCP units and compared antibody levels with patient outcomes. For each antibody, a Bayesian exponential survival time regression model including prognostic variables was fit, and the posterior probability of a beneficial effect (PBE) of higher antibody level on survival time was computed.

Results: CCP was administered to 44 cancer patients. The median age was 60 years (range 37-84) and 19 (43%) were female. Twelve patients (27%) died of COVID-19-related complications. Higher levels of two non-SARS-CoV-2-specific antibodies, anti-HCoV-OC43 spike IgG and anti-HCoV-HKU1 spike IgG, had PBE = 1.00, and 4 SARS-CoV-2-specific antibodies had PBEs between 0.90 and 0.95. Other factors associated with better survival were shorter time to CCP administration, younger age, and female sex.

Conclusions: Common cold coronavirus spike IgG antibodies anti-HCoV-OC43 and anti-HCoV-HKU1 may target a common domain for SARS-CoV-2 and other coronaviruses. They provide a promising therapeutic target for monoclonal antibody production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987049PMC
http://dx.doi.org/10.1101/2021.03.08.21252775DOI Listing

Publication Analysis

Top Keywords

spike igg
12
common cold
8
cold coronavirus
8
convalescent plasma
8
survival time
8
antibodies anti-hcov-oc43
8
antibodies
7
survival
5
ccp
5
high levels
4

Similar Publications

Introduction: Immune-deficient/disordered people (IDP) elicit a less robust immune response to COVID-19 vaccination than the general US population. Despite millions of IDP at presumed elevated risk, few population-level studies of IDP have been conducted in the Omicron era to evaluate breakthrough infection-related outcomes.

Methods: We followed a prospective cohort of 219 IDP and 63 healthy volunteers (HV) in the USA from April 2021 (Alpha variant peak) to July 2023 (Omicron XBB variant peak).

View Article and Find Full Text PDF

Introduction: The COVID-19 pandemic had significant global public health consequences, affecting over 200 countries and regions by 2020. The development and efficacy of specific vaccines, such as the mRNA-1273 (Spikevax) vaccine developed by Moderna Inc., have substantially reduced the impact of the pandemic and mitigated its consequences.

View Article and Find Full Text PDF

The XBB.1.5 COVID-19 vaccine elicits a durable antibody response to ancestral and XBB.1.5 SARS-CoV-2 spike proteins.

Sci Transl Med

September 2025

Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.

The rapid emergence of divergent SARS-CoV-2 variants led to a 2023-2024 update of the COVID-19 mRNA vaccine to a monovalent version containing the XBB.1.5 SARS-CoV-2 spike antigen.

View Article and Find Full Text PDF

Background: Immune induction under B-cell depletion is complex and far from being fully understood.

Methods: We investigated clinical and immunological responses after dual homologous mRNA vaccination with BNT162b2 and after booster vaccination or infection in 14 B-cell depleted patients with inflammatory central nervous system disease in comparison to 28 healthy controls. Spike-specific IgG were determined using ELISA and neutralizing activity by surrogate assay.

View Article and Find Full Text PDF

Post-Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome or "Long COVID" represents a widespread health challenge that necessitates the development of novel diagnostic approaches and targeted therapies that can be readily deployed. Immune dysregulation has been reported as one of the hallmarks of PASC, but the extent of PASC immune dysregulation in patients over time remains unclear. We therefore assessed SARS-CoV-2-specific antibody responses, peripheral immune cell profiles, autoantibody profiles and circulating cytokines for up to 6 months in participants with a SARS-CoV-2 infection who either convalesced or developed PASC.

View Article and Find Full Text PDF