Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: We investigate, by an extensive quality evaluation approach, performances and potential side effects introduced in Computed Tomography (CT) images by Deep Learning (DL) processing.

Method: We selected two relevant processing steps, denoise and segmentation, implemented by two Convolutional Neural Networks (CNNs) models based on autoencoder architecture (encoder-decoder and UNet) and trained for the two tasks. In order to limit the number of uncontrolled variables, we designed a phantom containing cylindrical inserts of different sizes, filled with iodinated contrast media. A large CT image dataset was collected at different acquisition settings and two reconstruction algorithms. We characterized the CNNs behavior using metrics from the signal detection theory, radiological and conventional image quality parameters, and finally unconventional radiomic features analysis.

Results: The UNet, due to the deeper architecture complexity, outperformed the shallower encoder-decoder in terms of conventional quality parameters and preserved spatial resolution. We also studied how the CNNs modify the noise texture by using radiomic analysis, identifying sensitive and insensitive features to the denoise processing.

Conclusions: The proposed evaluation approach proved effective to accurately analyze and quantify the differences in CNNs behavior, in particular with regard to the alterations introduced in the processed images. Our results suggest that even a deeper and more complex network, which achieves good performances, is not necessarily a better network because it can modify texture features in an unwanted way.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2021.02.022DOI Listing

Publication Analysis

Top Keywords

images deep
8
deep learning
8
evaluation approach
8
cnns behavior
8
quality parameters
8
addressing signal
4
signal alterations
4
alterations induced
4
induced images
4
learning processing
4

Similar Publications

A spatial-frequency hybrid restoration network for JPEG compressed image deblurring.

Neural Netw

September 2025

organization=Chongqing Key Laboratory of Computer Network and Communication Technology, School of Computer Science and Technology (National Exemplary Software School), Chongqing University of Posts and Telecommunications, city=Chongqing, postcode=400065, country=China. Electronic address: tianh519@1

Image deblurring and compression-artifact removal are both ill-posed inverse problems in low-level vision tasks. So far, although numerous image deblurring and compression-artifact removal methods have been proposed respectively, the research for explicit handling blur and compression-artifact coexisting degradation image (BCDI) is rare. In the BCDI, image contents will be damaged more seriously, especially for edges and texture details.

View Article and Find Full Text PDF

Multimodal self-supervised retinal vessel segmentation.

Neural Netw

September 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:

Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.

View Article and Find Full Text PDF

Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.

View Article and Find Full Text PDF

For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".

View Article and Find Full Text PDF

Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.

Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.

View Article and Find Full Text PDF