98%
921
2 minutes
20
Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202005241 | DOI Listing |
Int J Biol Macromol
September 2025
Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand. Electronic address:
Magnetic chitosan nanoparticles represent a promising platform in targeted drug delivery by merging the biocompatibility and mucoadhesiveness of chitosan with the superparamagnetic iron-oxide cores magnetite (Fe₃O₄) or maghemite (γ-Fe₂O₃). This synergy enables enhanced therapeutic precision through external magnetic guidance, controlled release, and stimuli-responsive behavior. MCNPs are particularly valuable in oncology, allowing site-specific drug delivery, magnetic hyperthermia, and real-time imaging via MRI.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania.
Magnetic nanoparticles are widely explored in biomedical applications, particularly as MRI contrast agents and for magnetic hyperthermia. However, their photothermal capabilities under near-infrared (NIR) irradiation remain underexplored in realistic, tissue-like environments. This study provides a comprehensive assessment of ultrasmall FeO nanoparticles (9.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Crystal Growth Centre, Anna University, Chennai, 600025, Tamil Nadu, India.
Increase in breast cancer has led to the search for systems that can enable, targeted, sustained and prolonged release of drugs while simultaneously reducing the side effects posed by them. In light of this, folic acid-conjugated 5-Fluorouracil and doxorubicin loaded chitosan/Fe₃O₄ (FA-dual@CS/Fe₃O₄) nanocomposite has been synthesized using the chemical method for targeted breast cancer therapy in addition to CS/FeO and dual drug encapsulated CS/FeO. FTIR and XPS studies confirm the successful drug encapsulation and FA conjugation.
View Article and Find Full Text PDFSci Rep
September 2025
Department of obstetrics and gynecology, The First Hospital of Lanzhou University, Key Laboratory for GynecologicOncology, Gansu Province, China.