Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydraulic failure has been extensively studied during drought-induced plant dieback, but its role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known about the hydraulic integrity of perennial organs over the short- and long-term. We investigated the effects of esca on stem hydraulic integrity in naturally infected plants within a single season and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measurements, and tylose and vascular pathogen detection with in vivo X-ray microtomography visualizations. Xylem occlusions (tyloses) and subsequent loss of stem hydraulic conductivity (ks) occurred in all shoots with severe symptoms (apoplexy) and in more than 60% of shoots with moderate symptoms (tiger-stripe), with no tyloses in asymptomatic shoots. In vivo stem observations demonstrated that tyloses occurred only when leaf symptoms appeared, and resulted in more than 50% loss of hydraulic conductance in 40% of symptomatic stems, unrelated to symptom age. The impact of esca on xylem integrity was only seasonal, with no long-term impact of disease history. Our study demonstrated how and to what extent a vascular disease such as esca, affecting xylem integrity, could amplify plant mortality through hydraulic failure.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erab117DOI Listing

Publication Analysis

Top Keywords

xylem integrity
12
seasonal long-term
8
esca grapevine
8
hydraulic
8
hydraulic failure
8
hydraulic integrity
8
stem hydraulic
8
hydraulic conductivity
8
esca xylem
8
esca
5

Similar Publications

Background: The invasive weed poses significant ecological threats, necessitating novel control strategies. This study investigated the phytotoxic potential of methyl indole-3-acetate (MEIAA) through foliar application. As a methylated derivative of IAA, MEIAA exists in plants at extremely low concentrations and exhibits herbicidal properties distinct from conventional auxin mimics such as 2,4-D.

View Article and Find Full Text PDF

Xylem cells are surrounded by primary and secondary cell walls. Formation of primary walls is regulated by the cell wall integrity surveillance system, but it is unclear if the deposition of secondary walls is similarly regulated. To study this question, we introduced to aspen three different enzymes cleaving cell wall-localized xylan and we suppressed xylan synthase components either ubiquitously or specifically during secondary wall formation using Populus trichocarpa GT43B promoter.

View Article and Find Full Text PDF

PagC3H3, encoding a p-coumarate 3-hydroxylase, catalyzes a critical step in lignin biosynthesis and confers enhanced insect resistance in poplar. Its overexpression increases lignin deposition, enhancing physical barrier formation against arthropod herbivory (e.g.

View Article and Find Full Text PDF

The chemical composition of wood plays a pivotal role in the adaptability and structural integrity of trees. However, few studies have investigated the environmental factors that determine lignin composition and its biological significance in plants. Here, we examined the lignin syringyl-to-guaiacyl (S/G) ratio in members of a population sourced from their native habitat and conducted a genome wide association study to identify genes linked to lignin formation.

View Article and Find Full Text PDF

Wood is the most abundant renewable natural resource composed of different polysaccharides and lignin, but its utilisation is hampered by intermolecular linkages between these components forming lignin-carbohydrate complexes (LCCs) causing recalcitrance. The links between glucuronoxylan and the γ-C of lignin (γ-ester linkages) are thought to contribute to one-third of LCCs, but direct evidence for their natural occurrence and their role in recalcitrance has been scarce so far. To address these issues, Phanerochaete carnosa glucuronoyl esterase (PcGCE), hydrolysing γ-ester linkages, was expressed in cell walls of developing wood in hybrid aspen (Populus tremula L.

View Article and Find Full Text PDF