Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anthropogenic climate change is expected to affect global river flow. Here, we analyze time series of low, mean, and high river flows from 7250 observatories around the world covering the years 1971 to 2010. We identify spatially complex trend patterns, where some regions are drying and others are wetting consistently across low, mean, and high flows. Trends computed from state-of-the-art model simulations are consistent with the observations only if radiative forcing that accounts for anthropogenic climate change is considered. Simulated effects of water and land management do not suffice to reproduce the observed trend pattern. Thus, the analysis provides clear evidence for the role of externally forced climate change as a causal driver of recent trends in mean and extreme river flow at the global scale.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aba3996DOI Listing

Publication Analysis

Top Keywords

climate change
16
river flow
12
trends extreme
8
extreme river
8
anthropogenic climate
8
low high
8
globally observed
4
observed trends
4
river
4
flow attributed
4

Similar Publications

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.

Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.

Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.

View Article and Find Full Text PDF

Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.

View Article and Find Full Text PDF

Cooling outweighs warming across phenological transitions in the Northern Hemisphere.

Proc Natl Acad Sci U S A

September 2025

Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Vegetation phenology, i.e., seasonal biological events such as leaf-out and leaf-fall, regulates local climate through biophysical processes like evapotranspiration (ET) and albedo.

View Article and Find Full Text PDF

Antarctic krill () is the central prey species in the Southern Ocean food web, supporting the largest and fastest-growing fishery in the region, managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Climate change is threatening krill populations and their predators, while current catch limits do not take into account climate variability or krill population dynamics. In 2024, CCAMLR was unable to renew its spatial catch limits, highlighting the urgent need for improved management of the krill fishery to prevent any harm to the Southern Ocean ecosystem.

View Article and Find Full Text PDF