Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, a soluble complex formed between 0.5% (w/v) heated whey protein isolate (HWPI) and 5% (w/v) octenyl succinic anhydride (OSA)-modified starch at pH 4.5 was used to encapsulate β-carotene for improving its solubility and stability. The apparent aqueous solubility of β-carotene was increased markedly (264.05 ± 72.53 μg/mL) after encapsulation in the soluble complex. Transmission electron microscopy and scanning electron microscopy were used to evaluate the effect of the encapsulation of β-carotene on the structure of the soluble complex. Fourier transform infrared spectroscopy showed that the characteristic peaks of β-carotene disappeared in the soluble complex, suggesting that β-carotene may have been encapsulated into the soluble complex via hydrophobic interactions. X-ray diffraction indicated that the β-carotene was in an amorphous form within the soluble complex. An accelerated stability test showed that the soluble complex could effectively improve the chemical stability of β-carotene during long-term storage under low pH conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.129267 | DOI Listing |