98%
921
2 minutes
20
This study is aimed to enhance the understanding of the interaction between ionic liquids (ILs) and non-ionic Pluronic triblock copolymers in aqueous two-phase micellar systems (ATPMS) used for the selective separation/purification of hydrophobic biomolecules. The ILs allow a precise control of the cloud point phase separation temperature (CPT), particularly important when the stability of the molecule is highly dependent on temperature. The effect of choline-based ILs, with two different counter-anions, chloride and hexanoate, was evaluated using molecular dynamics simulations (MD) for F-68 and L-35 Pluronic aqueous solutions. The simulations revealed the role played by the anions during the Pluronic self-assembly, with choline chloride hindering Pluronic aggregation and the choline hexanoate favouring micelle formation and coalescence, in agreement with the experimental data. A detailed study of the accessible surface area of Pluronic showed a progressive dehydration of the Pluronic hydrophilic micelle corona in choline hexanoate mixtures promoting inter-micelle interactions and, consequently, micelle coalescence. With the addition of choline hexanoate, it was observed that the hydrophilic segments, which form the micelle corona, twisted towards the Pluronic micelle core. The electrostatic interaction is also shown to play a key role in this IL-Pluronic aqueous solution, as the hexanoate anions are accommodated in the Pluronic micelle core, while the choline cations are hosted by the Pluronic micelle corona, with the ions interacting with each other during the self-assembly process. In addition, a comparison study of F-68 and L-35 aqueous solutions shows that the IL impact depends on the length of the Pluronic hydrophilic segment. This work provides a realistic microscopic scenario of the complex interactions between Pluronic copolymers and ILs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp06572b | DOI Listing |
Eur J Ophthalmol
September 2025
Department of Ophthalmology, Casilino General Hospital, Rome, Italy.
PurposeTo evaluate the safety and ability of an ophthalmic solution containing Poloxamer 407 and Polyquaternium 133 to reduce conjunctival bacterial load before cataract surgery.MethodsPatients (n = 74) were randomized to 2 groups: treatment (n = 37) or placebo (treatment's vehicle; (n = 37)) BID from V1 to V3. Patients were also given standard postoperative treatment from V2 to V3.
View Article and Find Full Text PDFMacromol Biosci
September 2025
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Conventional gelatin's gel-to-sol transition upon heating restricts its utility in biomedical applications that benefit from a gel state at physiological temperatures such as Pluronic F127 and poly(NIPAAm). Herein, we present "rev-Gelatin", a gelatin engineered with reverse thermo-responsive properties that undergoes a sol-to-gel transition as temperature rises from ambient to body temperature. Inspired by the phase dynamics of common materials like candy and ice cubes, whose surfaces soften or partially melt under warming, facilitating inter-object adhesion- rev-Gelatin leverages this concept to achieve fluidity at room temperature for easy injectability.
View Article and Find Full Text PDFInt J Pharm X
December 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwada, Punjab, India.
The study explored HSPiP and QbD-(quality by design) enabled optimized cubosomes for sustained drug release, improved permeation, and enhanced oral bioavailability. OCUB1 (the optimized product) was characterized for size, zeta potential (ZP), thermal analysis, and surface roughness. drug release and hemolysis studies were carried out using a dialysis membrane and rat erythrocytes (4 % suspension), respectively.
View Article and Find Full Text PDFBiomater Res
September 2025
Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang 212001, P. R. China.
Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Coriolis Pharma Research GmbH, Fraunhoferstraße 18 b, Martinsried 82152, Germany.
Fenton-like reagents serve as useful tools to induce oxidative stress in forced degradation studies of surfactants, providing a relevant model due to the possible presence of trace amounts of transition metal ions and peroxides in liquid drug formulations. It is known that catalytic reactivity of transition metal ions heavily depends on the ligands present in the solution and that it differs between buffer systems. Herein, we compare the influence of common buffers and chelating agents on poloxamer188 (P188) degradation by using a fast-gradient reversed phase chromatography with charged aerosol detection (LC-CAD) and automatic sample preparation.
View Article and Find Full Text PDF