Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: For decades, inflammation has been considered a cause of pharmacokinetic variability, mainly in relation to the inhibitory effect of pro-inflammatory cytokines on the expression level and activity of cytochrome P450 (CYP). In vitro and clinical studies have shown that two major CYPs, CYP2C19 and CYP3A4, are both impaired. The objective of the present study was to quantify the impact of the inflammatory response on the activity of both CYPs in order to predict the pharmacokinetic profile of their substrates according to systemic C-reactive protein (CRP).

Methods: The relationships between CRP concentration and both CYPs activities were estimated and validated using clinical data first on midazolam then on voriconazole. Finally, clinical data on omeprazole were used to validate the findings. For each substrate, a physiologically based pharmacokinetics model was built using a bottom-up approach, and the relationships between CRP level and CYP activities were estimated by a top-down approach. After incorporating the respective relationships, we compared the predictions and observed drug concentrations.

Results: Changes in pharmacokinetic profiles and parameters induced by inflammation seem to be captured accurately by the models.

Conclusions: These findings suggest that the pharmacokinetics of CYP2C19 and CYP3A4 substrates can be predicted depending on the CRP concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-021-03019-7DOI Listing

Publication Analysis

Top Keywords

cyp2c19 cyp3a4
12
pharmacokinetics cyp2c19
8
cyp3a4 substrates
8
relationships crp
8
crp concentration
8
activities estimated
8
clinical data
8
modeling approach
4
approach predict
4
predict impact
4

Similar Publications

ACP-105 (CAS: 1048998-11-3) is a novel non-steroidal selective androgen receptor modulator (SARM), increasingly detected in anti-doping analyses, yet lacking a comprehensive ADME profile. This study provides the first integrative in silico characterization of ACP-105's ADME properties using seven independent methods (ADMETlab 3.0, ADMET Predictor 12.

View Article and Find Full Text PDF

Background: Omeprazole, a widely used proton pump inhibitor, has been associated with rare but serious adverse events such as myopathy. Previous research suggests that concurrent use of omeprazole with fluconazole, a potent cytochrome P450 (CYP) 2C19/3A4 inhibitor, may increase the risk of myopathy. However, the contribution of genetic polymorphisms in CYP enzymes remains unclear.

View Article and Find Full Text PDF

GenoStaR: An R Package for Genotype to Star Allele Conversion for Major Cytochrome P450 Family of Genes.

Clin Pharmacol Ther

September 2025

Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada.

Pharmacogenomics enables the personalization of drug therapy by linking genetic variations to differences in drug metabolism, efficacy, and risk of adverse reactions. Genetic polymorphisms within cytochrome P450 (CYP) genes significantly affect enzyme activity, influencing drug plasma levels, responses, and safety. Central to this process is accurate genotype-to-phenotype translation, especially for the CYP enzyme family, which metabolizes 70-80% of clinically used drugs.

View Article and Find Full Text PDF

Physiologically Based Pharmacokinetic Modeling to Assess Perpetrator and Victim Cytochrome P450 2C Induction Risk.

Pharmaceutics

August 2025

Drug Metabolism and Pharmacokinetics, Oncology R&D (Research & Development), AstraZeneca, 35 Gatehouse Park Drive, Boston, MA 02451, USA.

Accurate assessment of CYP2C induction-mediated drug-drug interactions (DDIs) remains a challenge, despite the importance of CYP2C enzymes in drug metabolism. Limitations in available models and scarce clinical induction data have hampered quantitative preclinical DDI risk evaluation. In this study, the authors utilized an all-human hepatocyte triculture system to capture CYP2C induction using the perpetrators rifampicin, efavirenz, carbamazepine, and apalutamide.

View Article and Find Full Text PDF

Cytochrome P450 (CYP450) enzymes play an essential role in the metabolism of drugs, particularly in phase I metabolic reactions. In this article, we present a comprehensive review of fifteen selected enzymes belonging to the CYP450 family. The enzymes included in this analysis are CYP7A1, CYP3A4, CYP3A5, CYP2D6, CYP2E1, CYP2C8, CYP2C18, CYP2C9, CYP2C19, CYP2B6, CYP2A6, CYP2A13, CYP1B1, CYP1A1, and CYP1A2.

View Article and Find Full Text PDF