A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Neurons in the Nonhuman Primate Amygdala and Dorsal Anterior Cingulate Cortex Signal Aversive Memory Formation under Sedation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Anesthetics aim to prevent memory of unpleasant experiences. The amygdala and dorsal anterior cingulate cortex participate in forging emotional and valence-driven memory formation. It was hypothesized that this circuitry maintains its role under sedation.

Methods: Two nonhuman primates underwent aversive tone-odor conditioning under sedative states induced by ketamine or midazolam (1 to 8 and 0.1 to 0.8 mg/kg, respectively). The primary outcome was behavioral and neural evidence suggesting memory formation. This study simultaneously measured conditioned inspiratory changes and changes in firing rate of single neurons in the amygdala and the dorsal anterior cingulate cortex in response to an expected aversive olfactory stimulus appearing during acquisition and tested their retention after recovery.

Results: Aversive memory formation occurred in 26 of 59 sessions under anesthetics (16 of 29 and 10 of 30, 5 of 30 and 21 of 29 for midazolam and ketamine at low and high doses, respectively). Single-neuron responses in the amygdala and dorsal anterior cingulate cortex were positively correlated between acquisition and retention (amygdala, n = 101, r = 0.51, P < 0.001; dorsal anterior cingulate cortex, n = 121, r = 0.32, P < 0.001). Neural responses during acquisition under anesthetics were stronger in sessions exhibiting memory formation than those that did not (amygdala median response ratio, 0.52 versus 0.33, n = 101, P = 0.021; dorsal anterior cingulate cortex median response ratio, 0.48 versus 0.32, n = 121, P = 0.012). The change in firing rate of amygdala neurons during acquisition was correlated with the size of stimuli-conditioned inspiratory response during retention (n = 101, r = 0.22 P = 0.026). Thus, amygdala and dorsal anterior cingulate cortex responses during acquisition under anesthetics predicted retention. Respiratory unconditioned responses to the aversive odor anesthetics did not differ from saline controls.

Conclusions: These results suggest that the amygdala-dorsal anterior cingulate cortex circuit maintains its role in acquisition and maintenance of aversive memories in nonhuman primates under sedation with ketamine and midazolam and that the stimulus valence is sufficient to drive memory formation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000003732DOI Listing

Publication Analysis

Top Keywords

anterior cingulate
32
cingulate cortex
32
dorsal anterior
28
memory formation
24
amygdala dorsal
20
amygdala
8
anterior
8
cingulate
8
cortex
8
aversive memory
8

Similar Publications