Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat () using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928317PMC
http://dx.doi.org/10.3389/fpls.2021.631323DOI Listing

Publication Analysis

Top Keywords

genetic variation
8
distal regions
8
regions chromosomes
8
manipulate recombination
8
meiotic progression
8
meiotic
5
wheat
5
recombination
5
regions
5
distal
4

Similar Publications

Background: Genetic variation contributes to atrial fibrillation (AF), but its impact may vary with age. The Research Program contains whole-genome sequencing of data from 100 574 adult participants with linked electronic health records.

Methods: We assessed clinical, monogenic, and polygenic associations with AF in a cross-sectional analysis, stratified by age: <45 years (n=22 290), 45 to 60 years (n=26 805), and >60 years (n=51 659).

View Article and Find Full Text PDF

The Epigenetic Regulation of Agronomic Traits and Environmental Adaptability in Brassicas.

Plant Cell Environ

September 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov

As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.

View Article and Find Full Text PDF

Dissecting the Causal Association Between Bulimia Nervosa and Structural Brain Abnormalities: A Two-Sample Bidirectional Mendelian Randomization Study.

Brain Behav

September 2025

The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.

Background: Diverse correlations between structural brain abnormalities and the clinical feature of bulimia nervosa (BN) have been identified in previous observational studies.

Objective: To explore the bidirectional causality between BN and brain structural magnetic resonance imaging (MRI) phenotypes.

Methods: Genome-wide association studies (GWAS) of 2441 participants identified genetic variants associated with disordered eating and predicted BN, whereas UK Biobank 3D-T1 MRI data were used to analyze brain structural phenotypes.

View Article and Find Full Text PDF

Background: Y69H (p.Y89H) variant hereditary transthyretin (ATTRv) amyloidosis causes meningeal amyloidosis, with mutant TTR deposits localized to the leptomeninges and vitreous body.

Methods: The effect of tafamidis meglumine on neurological disorders, such as the frequency of transient focal neurological episodes (TFNEs), magnetic resonance imaging (MRI) findings, and TTR levels in cerebrospinal fluid, was investigated in two patients diagnosed with Y69H ATTRv mutation.

View Article and Find Full Text PDF

Identification of a novel variant in gene in a patient with 46, XX disorders of sex development.

Gynecol Endocrinol

December 2025

National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.

Objective: To expand the clinical phenotype associated with MYRF mutations in disorders of sex development (DSDs).

Methods: We present a case of a 17-year-old patient with a female phenotype who presented with primary amenorrhea.

Results: The patient's external genitalia was entirely female in appearance, though there was no opening of vagina below the orifice of urethra.

View Article and Find Full Text PDF