Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human cytomegalovirus (HCMV) causes congenital disease with long-term morbidity. HCMV glycoprotein B (gB) transitions irreversibly from a metastable prefusion to a stable postfusion conformation to fuse the viral envelope with a host cell membrane during entry. We stabilized prefusion gB on the virion with a fusion inhibitor and a chemical cross-linker, extracted and purified it, and then determined its structure to 3.6-Å resolution by electron cryomicroscopy. Our results revealed the structural rearrangements that mediate membrane fusion and details of the interactions among the fusion loops, the membrane-proximal region, transmembrane domain, and bound fusion inhibitor that stabilized gB in the prefusion state. The structure rationalizes known gB antigenic sites. By analogy to successful vaccine antigen engineering approaches for other viral pathogens, the high-resolution prefusion gB structure provides a basis to develop stabilized prefusion gB HCMV vaccine antigens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935361PMC
http://dx.doi.org/10.1126/sciadv.abf3178DOI Listing

Publication Analysis

Top Keywords

stabilized prefusion
12
prefusion structure
8
human cytomegalovirus
8
membrane fusion
8
fusion inhibitor
8
prefusion
6
fusion
5
structure human
4
cytomegalovirus glycoprotein
4
glycoprotein structural
4

Similar Publications

The nine human herpesviruses, including herpes simplex virus 1 and 2, human cytomegalovirus and Epstein-Barr virus, present a significant burden to global public health. Their envelopes contain at least ten different glycoproteins, which are necessary for host cell tropism, attachment and entry. The best conserved among them, glycoprotein B (gB), is essential as it performs membrane fusion by undergoing extensive rearrangements from a prefusion to postfusion conformation.

View Article and Find Full Text PDF

Vaccines that stimulate systemic and mucosal immunity to a level required to prevent SARS-CoV-2 infection and transmission are an unmet need. Highly protective hepatitis B and human papillomavirus nanoparticle vaccines highlight the potential of multivalent nanoparticle vaccine platforms to provide enhanced immunity. Here, we report the construction and characterization of self-assembling 60-subunit icosahedral nanoparticle SARS-CoV-2 vaccines using the bacterial enzyme lumazine synthase (LuS).

View Article and Find Full Text PDF

Human endogenous retroviruses (HERVs) are remnants of ancient infections that comprise ~8% of the human genome. The HERV-K envelope glycoprotein (Env) is aberrantly expressed in cancers, autoimmune disorders, and neurodegenerative diseases, and is targeted by patients' own antibodies. However, a lack of structural information has limited molecular and immunological studies of the roles of HERVs in disease.

View Article and Find Full Text PDF

Unlabelled: Native-like HIV-1 envelope glycoprotein (Env) trimers, exemplified by the SOSIP design, are widely used as immunogens, analytical antigens, and for structural studies. These vaccine research and development programs require trimers that are based on multiple HIV-1 genotypes. While a wide range of protein engineering strategies can produce SOSIP trimers from most Env gene sequences, there are still examples of trimers that are expressed only at impractically low yields or that are unstable.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a global public health concern. Currently, RSV vaccines are approved only for use in older adults, while preventing the disease in infants and children, as well as ensuring vaccine durability, remains a significant challenge. The pre-fusion conformation of the RSV fusion (F) glycoprotein is a primary target for vaccine development, as it elicits significantly higher neutralizing antibody titers than the post-fusion form.

View Article and Find Full Text PDF