A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Iron accumulation in skeletal muscles of old mice is associated with impaired regeneration after ischaemia-reperfusion damage. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Oxidative stress is implicated in the insidious loss of muscle mass and strength that occurs with age. However, few studies have investigated the role of iron, which is elevated during ageing, in age-related muscle wasting and blunted repair after injury. We hypothesized that iron accumulation leads to membrane lipid peroxidation, muscle wasting, increased susceptibility to injury, and impaired muscle regeneration.

Methods: To examine the role of iron in age-related muscle atrophy, we compared the skeletal muscles of 3-month-old with 22- to 24-month-old 129SvEv FVBM mice. We assessed iron distribution and total elemental iron using laser ablation inductively coupled plasma mass spectrometry and Perls' stain on skeletal muscle cross-sections. In addition, old mice underwent ischaemia-reperfusion (IR) injury (90 min ischaemia), and muscle regeneration was assessed 14 days after injury. Immunoblotting was used to determine lipid peroxidation (4HNE) and iron-related proteins. To determine whether muscle iron content can be altered, old mice were treated with deferiprone (DFP) in the drinking water, and we assessed its effects on muscle regeneration after injury.

Results: We observed a significant increase in total elemental iron (+43%, P < 0.05) and lipid peroxidation (4HNE: +76%, P < 0.05) in tibialis anterior muscles of old mice. Iron was further increased after injury (adult: +81%, old: +135%, P < 0.05) and associated with increased lipid peroxidation (+41%, P < 0.05). Administration of DFP did not impact iron or measures of lipid peroxidation in skeletal muscle or modulate muscle mass. Increased muscle iron concentration and lipid peroxidation were associated with less efficient regeneration, evident from the smaller fibres in cross-sections of tibialis anterior muscles (-24%, P < 0.05) and an increased percentage of fibres with centralized nuclei (+4124%, P < 0.05) in muscles of old compared with adult mice. Administration of DFP lowered iron after IR injury (PRE: -32%, P < 0.05 and POST: -41%, P < 0.05), but did not translate to structural improvements.

Conclusions: Muscles from old mice have increased iron levels, which are associated with increased lipid peroxidation, increased susceptibility to IR injury, and impaired muscle regeneration. Our results suggest that iron is involved in effective muscle regeneration, highlighting the importance of iron homeostasis in muscle atrophy and muscle repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061412PMC
http://dx.doi.org/10.1002/jcsm.12685DOI Listing

Publication Analysis

Top Keywords

muscle
9
iron
8
iron accumulation
8
skeletal muscles
8
role iron
8
age-related muscle
8
muscle wasting
8
lipid peroxidation
8
total elemental
8
elemental iron
8

Similar Publications