A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Thermal plasma activation and UV/HO oxidative degradation of pharmaceutical residues. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aquatic environment becomes increasingly contaminated by anthropogenic pollutants such as pharmaceutical residues. Due to poor biodegradation and continuous discharge of persistent compounds in sewage water samples, pharmaceutical residues might end up in surface waters when not removed. To minimize this pollution, onsite wastewater treatment techniques might complement conventional waste water treatment plants (WWTPs). Advanced oxidation processes are useful techniques, since reactive oxygen species (ROS) are used for the degradation of unwanted medicine residues. In this paper we have studied the advanced oxidation in a controlled laboratory setting using thermal plasma and UV/HO treatment. Five different matrices, Milli-Q water, tap water, synthetic urine, diluted urine and synthetic sewage water were spiked with 14 pharmaceuticals with a concentration of 5 μg/L. All compounds were reduced or completely decomposed by both 150 W thermal plasma and UV/HO treatment. Additionally, also hospital sewage water was tested. First the concentrations of 10 pharmaceutical residues were determined by liquid chromatography mass spectrometry (LC-MS/MS). The pharmaceutical concentration ranged from 0.08 up to 2400 μg/L. With the application of 150 W thermal plasma or UV/HO, it was found that overall pharmaceutical degradation in hospital sewage water were nearly equivalent to the results obtained in the synthetic sewage water. However, based on the chemical abatement kinetics it was demonstrated that the degree of degradation decreases with increasing matrix complexity. Since reactive oxygen and nitrogen species (RONS) are continuously produced, thermal plasma treatment has the advantage over UV/HO treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.110884DOI Listing

Publication Analysis

Top Keywords

thermal plasma
20
sewage water
20
pharmaceutical residues
16
plasma uv/ho
12
uv/ho treatment
12
water
8
advanced oxidation
8
reactive oxygen
8
synthetic sewage
8
150 w thermal
8

Similar Publications