A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine Learning-based Differentiation of Benign and Premalignant Colorectal Polyps Detected with CT Colonography in an Asymptomatic Screening Population: A Proof-of-Concept Study. | LitMetric

Machine Learning-based Differentiation of Benign and Premalignant Colorectal Polyps Detected with CT Colonography in an Asymptomatic Screening Population: A Proof-of-Concept Study.

Radiology

From the Department of Radiology (S.G., P.W., S.M., C.C.C., J.R., M.I., P.M.K.), Department of Medicine II (C.S.), and Department of Pathology (T.K.), University Hospital, LMU Munich, Marchioninistr 15, 81377 Munich, Germany; and Radiologie München, Munich, Germany (A.G.).

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background CT colonography does not enable definite differentiation between benign and premalignant colorectal polyps. Purpose To perform machine learning-based differentiation of benign and premalignant colorectal polyps detected with CT colonography in an average-risk asymptomatic colorectal cancer screening sample with external validation using radiomics. Materials and Methods In this secondary analysis of a prospective trial, colorectal polyps of all size categories and morphologies were manually segmented on CT colonographic images and were classified as benign (hyperplastic polyp or regular mucosa) or premalignant (adenoma) according to the histopathologic reference standard. Quantitative image features characterizing shape ( = 14), gray level histogram statistics ( = 18), and image texture ( = 68) were extracted from segmentations after applying 22 image filters, resulting in 1906 feature-filter combinations. Based on these features, a random forest classification algorithm was trained to predict the individual polyp character. Diagnostic performance was validated in an external test set. Results The random forest model was fitted using a training set consisting of 107 colorectal polyps in 63 patients (mean age, 63 years ± 8 [standard deviation]; 40 men) comprising 169 segmentations on CT colonographic images. The external test set included 77 polyps in 59 patients comprising 118 segmentations. Random forest analysis yielded an area under the receiver operating characteristic curve of 0.91 (95% CI: 0.85, 0.96), a sensitivity of 82% (65 of 79) (95% CI: 74%, 91%), and a specificity of 85% (33 of 39) (95% CI: 72%, 95%) in the external test set. In two subgroup analyses of the external test set, the area under the receiver operating characteristic curve was 0.87 in the size category of 6-9 mm and 0.90 in the size category of 10 mm or larger. The most important image feature for decision making (relative importance of 3.7%) was quantifying first-order gray level histogram statistics. Conclusion In this proof-of-concept study, machine learning-based image analysis enabled noninvasive differentiation of benign and premalignant colorectal polyps with CT colonography. © RSNA, 2021

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2021202363DOI Listing

Publication Analysis

Top Keywords

colorectal polyps
24
differentiation benign
16
benign premalignant
16
premalignant colorectal
16
external test
16
test set
16
machine learning-based
12
random forest
12
learning-based differentiation
8
polyps detected
8

Similar Publications